Logik SS2012 - Übungsblatt 4

Malvin Gattinger

Aufgabe 1

a) b)
1.
$$\neg((\neg p \to \neg q) \to (q \to p))$$
 (A) 1. $\neg((\neg p \to q)$
2. $\neg p \to \neg q$ (1) 2. $(\neg p \to q)$
3. $\neg(q \to p)$ (1) 3.
4. q (3) 4.
5. $\neg p$ (3) 5.
6. p 7. $\neg q$ (2) 6.

X X X

Decrease a single Set of the consolidity of the set of th

Der negierte Satz liefert ausschließlich Widersprüche, d.h er ist eine Kontradiktion. Der ursprüngliche, nicht-negierte Satz ist also eine Tautologie.

1.
$$\neg((\neg p \to q) \land (q \to r) \to (\neg p \to \neg r))$$
 (A)
2. $(\neg p \to q) \land (q \to r)$ (1)
3. $\neg(\neg p \to \neg r)$ (1)
4. $\neg p \to q$ (2)
5. $q \to r$ (2)
6. $\neg p$ (3)

7.
$$r$$
 (3)
 $8.p$ $9.q$ (4)
 X $10 \neg a$ $11 r$ (5)

Der Baum bleibt offen, der negierte Satz ist also keine Kontradiktion. Der ursprüngliche, nicht-negierte Satz ist also keine Tautologie.

c) Das Argument $\neg p \to q, q \to r \models \neg p \to \neg r$ ist gültig, genau dann wenn der Satz $(\neg p \to q) \land (q \to r) \to (\neg p \to \neg r)$ logisch wahr ist.

1.
$$\neg((\neg p \to q) \land (q \to r) \to (\neg p \to \neg r))$$
 (A)
2. $(\neg p \to q) \land (q \to r)$ (1)
3. $\neg(\neg p \to \neg r)$ (1)
4. $\neg p \to q$ (2)
5. $q \to r$ (2)
6. $\neg p$ (3)
7. r (3)
8.p 9.q (4)
X 10. $\neg q$ 11. r (5)

Der negierte Satz führt nicht ausschließlich zu Widersprüchen, ist also keine Kontradiktion. Der ursprüngliche, nicht-negierte Satz ist daher keine Tautologie und das Argument somit ungültig.

Aufgabe 2

- a) $p, q \vdash p \land q$
- $1 \qquad (1) \quad p \qquad A$
- $2 \qquad (2) \quad \neg q \qquad A$
- 1,2 (3) $p \land \neg q$ $1,2 \land I$
- b) $p \lor q, \neg q \lor r, \neg p \vdash r$
- 1 (1) $p \lor q$ A
- $2 \qquad (2) \quad \neg q \lor r \quad A$
- $3 \qquad (3) \quad \neg p \qquad A$
- 1,3 (4) q $1,3 \lor E$
- 1, 2, 3 (5) r $2, 4 \lor E$
- c) $\neg p \leftrightarrow q, \neg q \lor r \vdash \neg p \to r$
- 1 $(1) \neg p \leftrightarrow q A$
- $2 \qquad (2) \quad \neg p \qquad A$
- $3 \qquad (3) \quad \neg q \lor r \quad A$
- 1 (4) $\neg p \rightarrow q$ $1 \leftrightarrow E$
- $1,2 \qquad (5) \quad q \qquad \qquad 2,4 \to E$
- 1, 2, 3 (6) r $3, 5 \lor E$
- $1,3 \qquad (7) \quad \neg p \to r \quad 6 \to I(2)$