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Recap: Explicit DEL Model Checking



Explicit DEL Model Checking: Implementation

data EpistM state = Mo
[state]
[Agent]
[(state,[Prp])]
[(Agent,Erel state)]
[state] deriving (Eq,Show)

isTrueAt :: EpistM state -> state -> Form state -> Bool
isTrueAt _ _ Top = True
isTrueAt _ w (Info x) = w == x
isTrueAt(Mo _ _ val _ _) w (Prp p) = elem p (apply val w)
isTrueAt m w (Ng f) = not (isTrueAt m w f)
isTrueAt m w (Conj fs) = all (isTrueAt m w) fs
isTrueAt m w (Disj fs) = any (isTrueAt m w) fs
isTrueAt m w (Kn ag f) =

all (\v -> isTrueAt m v f) (bl (rel ag m) w)



Explicit DEL Model Checking: Example

initM 3 = Mo
[[True,True,True],[True,True,False],[True,False,True]
,[True,False,False],[False,True,True],[False,True,False]
,[False,False,True],[False,False,False]]
[Ag 1,Ag 2,Ag 3]
[]
[(Ag 1,[[[True,True,True],[False,True,True]]

,[[True,True,False],[False,True,False]]
,[[True,False,True],[False,False,True]]
,[[True,False,False],[False,False,False]]])

,(Ag 2,...),(Ag 3,...)]
[[False,True,True]]



Limits of explicit model checking

I The set of possible worlds is explicitly constructed.
I Epistemic (equivalence) relations are spelled out.

⇒ Everything has to fit in memory.
For large models (1000 worlds) it gets slow.
Runtime in seconds for n Muddy Children:

n DEMO-S5

3 0.000
6 0.012
8 0.273
10 8.424
11 46.530
12 228.055
13 1215.474



Symbolic Model Checking for DEL



Symbolic Model Checking: General Idea

1. Can we represent models in a more compact way?
2. . . . such that we can still interpret all formulas?

There exist efficient methods for many temporal logics like LTL and
CTL (Clarke, Grumberg, and Peled 1999) and also epistemic logics
(Su, Sattar, and Luo 2007).
Today: How to do it for DEL.

1. RepresentM = (W ,Ri ,V ) symbolically: F = (V , θ,Oi).
2. Translate DEL to equivalent boolean formulas.
3. Use BDDs to speed up boolean operations.
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Symbolic Model Checking: General Idea
Instead of listing all possible worlds explicitly . . .

KrM
[0,1,2,3]
[ ("Alice",[[0,1],[2,3]])
, ("Bob" ,[[0,2],[1,3]]) ]
[ (0,[(P 1,False),(P 2,False)])
, (1,[(P 1,False),(P 2,True )])
, (2,[(P 1,True ),(P 2,False)])
, (3,[(P 1,True ),(P 2,True )]) ]

. . . we list atomic propositions and who can observe them:

KnS
[P 1,P 2]
(boolBddOf Top)
[ ("Alice",[P 1])
, ("Bob" ,[P 2])]



Symbolic Model Checking for DEL

Knowledge Structures

F = (V , θ,O1, · · · ,On)

V Vocabulary a set of propositional variables
θ State Law a boolean formula over V
Oi ⊆ V Observables propositions observable by i

The set of states is {s ⊆ V | s � θ}.
Call (F , s) a scenario.

The world is everything that is the case.
Die Welt ist alles, was der Fall ist.

Ludwig Wittgenstein
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New Semantics for DEL on Knowledge Structures

Easy:
I (F , s) |= p iff p ∈ s.
I (F , s) |= ¬ϕ iff not (F , s) |= ϕ
I (F , s) |= ϕ ∧ ψ iff (F , s) |= ϕ and (F , s) |= ψ

I know something iff it follows from my observations:
I (F , s) |= Kiϕ iff for all s ′, if s ∩Oi = s ′ ∩Oi , then (F , s ′) |= ϕ.

Updates restrict the set of states:
I (F , s) |= [ψ]ϕ iff (F , s) |= ψ implies (Fψ, s) |= ϕ where ‖ψ‖F

will be defined later and

Fψ := (V , θ ∧ ‖ψ‖F ,O1, · · · ,On)



Knowledge Structures

Example

F = (V = {p}, θ = >,O1 = {p},O2 = ∅)

States: ∅, {p}
Some facts:
I F ,∅ � ¬p ∧ K1¬p ∧ ¬K2¬p
I F , {p} � p ∧ K1p ∧ ¬K2p
I F , {p} � [!p]K2p

because Fp = (V = {p}, θ = p,O1 = {p},O2 = ∅)



Implementation of Knowledge Structures and Semantics

data KnowStruct = KnS [Prp] Bdd [(Agent,[Prp])]
type KnState = [Prp]
type Scenario = (KnowStruct,KnState)

eval :: Scenario -> Form -> Bool
eval (_,s) (PrpF p) = p `elem` s
eval (kns,s) (Neg form) = not (eval (kns,s) form)
eval (kns,s) (Conj forms) = all (eval (kns,s)) forms
eval scn (Impl f g) =

if eval scn f then eval scn g else True
eval (kns@(KnS _ _ obs),s) (K i form) =

all (\s' -> eval (kns,s') form) theres where
oi = apply obs i
theres = filter sameO (statesOf kns)
sameO s' = (restrict s' oi) `seteq` (restrict s oi)



From Knowledge Structures to Kripke Models

Theorem: For every knowledge structure F there is an equivalent
S5 Kripke ModelM such that F , s � ϕ iffM,ws � ϕ.
Proof.
Let W := {s ⊆ V | s � θ}, V = id and Rist iff s ∩ Oi = t ∩ Oi .
Example: The knowledge structure

F = (V = {p, q}, θ = p ∨ q,Oa = {p},Ob = {q})

is equivalent to this Kripke model:
p

p, qq

a

b



Implementation: KNS → Kripke
Let W := {s ⊆ V | s � θ}, V = id and Rist iff s ∩ Oi = t ∩ Oi .

knsToKripke :: Scenario -> PointedModel
knsToKripke (kns@(KnS ps _ obs),c) = (KrM ws rel val, w) where

lav = zip
(statesOf kns)
[0..(length (statesOf kns)-1)]

val = map ( \(s,n) -> (n,state2kripkeass s) ) lav
state2kripkeass s = map (\p -> (p, p `elem` s)) ps
rel = [(i,rf i) | i <- map fst obs]
rf i = map

(map snd)
(groupBy (\(x,_) (y,_) -> x==y) (sort $ pairs i))

pairs i = map
(\s -> (restrict s (apply obs i), apply lav s))
(statesOf kns)

ws = map fst val
w = apply lav c



From Kripke Models to Knowledge Structures

This direction is non-trivial.

Theorem: For every S5 Kripke ModelM there is an equivalent
knowledge structure F such thatM,w � ϕ iff F , sw � ϕ.

Proof. Problematic cases look like this:
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From Kripke Models to Knowledge Structures

Proof. (continued)

2

1
p

0
p

Alice

Alice

Alice

Bob

Trick: Add propositions to distinguish all equivalence classes.



From Kripke Models to Knowledge Structures

Proof. (continued)

2

1
p

0
p

Alice

Alice

Alice

Bob

is equivalent to

( V = {p, p2}, θ = p2 → p, OAlice = ∅, OBob = {p2} )

actual state: {p, p2}

�



Implementation: Kripke → KNS
kripkeToKns :: PointedModel -> Scenario
kripkeToKns (KrM worlds rel val, cur) = (KnS ps law obs, curs) where

v = map fst $ apply val cur
ags = map fst rel
newpstart = fromEnum $ freshp v -- start counting new propositions
amount i =

ceiling (logBase 2 (fromIntegral $ length (apply rel i)) -- |O_i|
newpstep = maximum [ amount i | i <- ags ]
numberof i = fromJust $ elemIndex i (map fst rel)
newps i = map -- O_i

(\k -> P (newpstart + (newpstep * numberof i) +k))
[0..(amount i - 1)]

copyrel i = zip -- label equiv.classes with P(O_i)
(apply rel i)
(powerset (newps i))

gag i w = snd $ head $ filter (\(ws,_) -> elem w ws) (copyrel i)
g w = filter (apply (apply val w)) v

++ concat [ gag i w | i <- ags ]
ps = v ++ concat [ newps i | i <- ags ]
law = disSet [ booloutof (g w) ps | w <- worlds ]
obs = [ (i,newps i) | i<- ags ]
curs = sort $ g cur



So what, Kripke Models and knowledge structures are the same?!



Everything is boolean!

Definition: Fix a knowledge structure F = (V , θ,O1, · · · ,On).
We translate everything to boolean formulas ‖ · ‖F :

p p
¬ϕ ¬‖ϕ‖F
ϕ1 ∧ ϕ2 ‖ϕ1‖F ∧ ‖ϕ2‖F
Kiϕ ∀(V \ Oi)(θ → ‖ϕ‖F )
[!ϕ]ψ ‖ϕ‖F → ‖ψ‖Fϕ

Theorem: For all scenarios (F , s) and all formulas ϕ:

F , s � ϕ ⇐⇒ s � ‖ϕ‖F



Why care about boolean formulas?



Binary Decision Diagrams



Truth Tables are dead, long live trees

Definition: A Binary Decision Diagram for the variables V is a
directed acyclic graph where non-terminal nodes are from V with
two outgoing edges and terminal nodes are > or ⊥.
I All boolean functions can be represented like this.
I Ordered: Variables in a given order, maximally once.
I Reduced: No redundancy, identify isomorphic subgraphs.
I By “BDD” we always mean an ordered and reduced BDD.

1 10

3

2

3 3

111

2

1

0

3

0

1

2

3

10

(Read the classic Bryant 1986 for more details.)



BDD Magic

How long do you need to compare these two formulas?

p3 ∨ ¬(p1 → p2) ??? ¬(p1 ∧ ¬p2)→ p3

Here are is their BDDs:
1

2

3

10
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BDD Magic

This was not an accident, BDDs are canonical.
Theorem:

ϕ ≡ ψ ⇒ BDD(ϕ) = BDD(ψ)

Equivalence checks are free and we have fast algorithms to compute
BDD(¬ϕ), BDD(ϕ ∧ ψ), BDD(ϕ→ ψ) etc.



NooBDD: A very naive BDD Implementation

See https://github.com/m4lvin/NooBDD.

data Bdd = Top | Bot | Node Int Bdd Bdd

https://github.com/m4lvin/NooBDD


(Has)CacBDD

If you worry about speed then use C++, they say. Hence to speed
up boolean operations, we use CacBDD (Lv, Su, and Xu 2013) via
binding, see https://github.com/m4lvin/HasCacBDD.

https://github.com/m4lvin/HasCacBDD


Implementation: Translation to BDDs

import Data.HasCacBDD -- (var,neg,conSet,forallSet,...)

bddOf :: KnowStruct -> Form -> Bdd
bddOf _ (PrpF (P n)) = var n
bddOf kns (Neg form) = neg $ bddOf kns form
bddOf kns (Conj forms) = conSet $ map (bddOf kns) forms
bddOf kns (Disj forms) = disSet $ map (bddOf kns) forms
bddOf kns (Impl f g) = imp (bddOf kns f) (bddOf kns g)
bddOf kns@(KnS allprops lawbdd obs) (K i form) =

forallSet otherps (imp lawbdd (bddOf kns form)) where
otherps = map (\(P n) -> n) $ allprops \\ apply obs i

bddOf kns (PubAnnounce form1 form2) =
imp (bddOf kns form1) newform2 where

newform2 = bddOf (pubAnnounce kns form1) form2



Putting it all together

To modelcheck F , s � ϕ

1. Translate ϕ to a BDD with respect to F .
2. Restrict the BDD to s.
3. Return the resulting constant.

evalViaBdd :: Scenario -> Form -> Bool
evalViaBdd (kns@(KnS allprops _ _),s) f = bool where

b = restrictSet (bddOf kns f) facts
facts = [ (n, P n `elem` s) | (P n) <- allprops ]
bool | b == top = True

| b == bot = False
| otherwise = error ("BDD leftover.")



Examples and Results



Symbolic Muddy Children
Initial knowledge structure:

F = ({p1, p2, p3},>,O1 = {p2, p3},O2 = {p1, p3},O3 = {p1, p2})

After the third announcement the children know their own state:

ϕ = [!(p1∨p2∨p3)][!
∧
i
¬(Kipi∨Ki¬pi)][!

∧
i
¬(Kipi∨Ki¬pi)](

∧
i

(Kipi))

Intermediate BDDs for the state law:

1

>

2

⊥

3

2

> ⊥

1

3

2

1

>

2

⊥

3



Muddy Children

Runtime in seconds:

n DEMO-S5 SMCDEL

3 0.000 0.000
6 0.012 0.002
8 0.273 0.004
10 8.424 0.008
11 46.530 0.011
12 228.055 0.015
13 1215.474 0.019
20 0.078
40 0.777
60 2.563
80 6.905



Russian Cards
A puzzle:

Seven cards, enumerated from 1 to 7, are distributed
between Alice, Bob and Carol. Alice and Bob both receive
three cards and Carol one card. It is common knowledge
which cards exist and how many cards each agent has.
Everyone knows their own but not the others’ cards.
The goal of Alice and Bob now is to learn each others
cards without Carol learning their cards.
They are only allowed to communicate via public
announcements.

Alice: “My set of cards is 123, 145, 167, 247 or 356.”
Bob: “Crow has card 7.”

There are 102 such “safe announcements” which (Ditmarsch 2003)
had to find and check by hand.
With symbolic model checking this takes 4 seconds.
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Sum and Product

The puzzle from (Freudenthal 1969):
A says to S and P: I chose two numbers x, y such that
1 < x < y and x + y ≤ 100. I will tell s = x + y to S
alone, and p = xy to P alone. These messages will stay
secret. But you should try to calculate the pair (x , y).
He does as announced. Now follows this conversation:
1. P says: I do not know it.
2. S says: I knew that.
3. P says: Now I know it.
4. S says: No I also know it.

Determine the pair (x , y).

Solved in 2 seconds.
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Sum and Product: Encoding numbers
-- possible pairs 1<x<y, x+y<=100
pairs :: [(Int, Int)]
pairs = [(x,y) | x<-[2..100], y<-[2..100], x<y, x+y<=100]

-- 7 propositions are enough to label [2..100]
xProps, yProps, sProps, pProps :: [Prp]
xProps = [(P 1)..(P 7)]
yProps = [(P 8)..(P 14)]
sProps = [(P 15)..(P 21)]
pProps = [(P 22)..(P (21+amount))]

where amount = ceiling (logBase 2 (50*50) :: Double)

xIs, yIs, sIs, pIs :: Int -> Form
xIs n = booloutofForm (powerset xProps !! n) xProps
yIs n = booloutofForm (powerset yProps !! n) yProps
sIs n = booloutofForm (powerset sProps !! n) sProps
pIs n = booloutofForm (powerset pProps !! n) pProps

xyAre :: (Int,Int) -> Form
xyAre (n,m) = Conj [ xIs n, yIs m ]



Dining Cryptographers

Fenrong, Yanjing and Jan had a very fancy diner. The waiter comes
in and tells them that it has already been paid.
They want to find out if it was one of them or Tsinghua University.
However, if one of them paid, they also respect the wish of that
person to stay anonymous. That is, they do not want to know who
of them paid if it was one of them.
This puzzle is solved by (Chaum 1988).

SMCDEL can check the case with 160 agents (and a lot of coins) in
10 seconds.
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Digression: Comparing DEL and ETL

Scenarios and protocols like the Dining Dryptographers can be
formalized in temporal logics (LTL,CTLK,. . . ) and in DEL.
With SMCDEL we can now also check the DEL variant quickly.
This motivates many questions:
I When are two formalizations of the same protocol equivalent?

(Benthem et al. 2009, Ditmarsch, Hoek, and Ruan (2013))
I Which formalizations are more intuitive?
I What is faster

I for your computer to model check?
I for you to write down formulas?



Howto use SMCDEL yourself



The easy way: SMCDEL web
Link: https://w4eg.de/malvin/illc/smcdelweb
Input: A knowledge structure and formulas to be checked.

-- Three Muddy Children in SMCDEL
VARS 1,2,3
LAW Top
OBS alice: 2,3

bob: 1,3
carol: 1,2

VALID? ~(alice knows whether 1)
WHERE? ~(1|2|3)
VALID?

[ ! (1|2|3) ]
[ ! ((~ (alice knows whether 1)) & (~ (bob knows whether 2)) & (~ (carol knows whether 3))) ]
[ ! ((~ (alice knows whether 1)) & (~ (bob knows whether 2)) & (~ (carol knows whether 3))) ]
(1 & 2 & 3)

https://w4eg.de/malvin/illc/smcdelweb


The hard way: import SMCDEL

Install HasCacBDD, then SMCDEL.
This allows you to define abbreviations and generat larger models
automatically without writing them by hand.



Action Models and Transformers



Action Models and Product Update

Action Model:
A = (A,Si , pre)

A set of actions
Si ⊆ A× A indistinguishability relation
pre : A→ L preconditions

Product Update:
M⊗A := (W ′,R ′,V ′) where
I W ′ = {(w , a) ∈W × A | M,w � pre(a)}
I R ′

i (s, a)(t, b) iff Rist and Siab
I V ′(w , a) = V (w) no factual change

Semantics:
M,w � [A, a]ϕ iffM,w � pre(a) impliesM⊗A, (w , a) � ϕ



Knowledge Transformers

Knowledge Transformer:

X = (V +, µ,O+
1 , . . . ,O

+
n )

V + New Vocabulary new propositional variables
µ Event Law a formula over V ∪ V +

O+
i ⊆ V + Observables what can i observe?

Transformation: Given F = (V , θ,O1, . . . ,On) and
X = (V +, µ,O+

1 , . . . ,O+
n ), define

F ⊗ X := (V ∪ V +, θ ∧ ||µ||F ,O1 ∪ O+
1 , . . . ,On ∪ O+

n )

Event: (X , x) where x ⊆ V +



Knowledge Transformers

Examples:
I public announcement: X = (∅, ϕ,∅,∅)
I (almost) private announcement of ϕ to a:

X = ({p}, p → ϕ,Oa = {p},Ob = ∅)

ϕ >
b

Theorem: For every S5 action model A there is a transformer X
(and vice versa) such that for every equivalentM and F :

M⊗A, (w , a) � ϕ ⇐⇒ F ⊗X , s ∪ x � ϕ



Non-S5



Belief as KD45

A crucial difference between Knowledge and Belief is Truth.
We assume Kϕ→ ϕ but in general not Bϕ→ ϕ.
⇒ Kripke Models for Belief are not reflexive.



Arbitrary Relations with BDDs

We can replace Oi with a BDD Ωi to describe any relation.
Trick: Use copy-propositions to describe reachable worlds.
(Gorogiannis and Ryan 2002)

p1

p2

p1, p2

p1

p′
1

p2

p′
2

> ⊥



Non-S5 Knowledge Structures

For every agent we replace Oi with a BDD Ωi .
Now translate Kiϕ to ∀~p′(θ′ → (Ωi(~p, ~p′)→ (‖ϕ‖F )′))



Thank you!
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