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1 Preliminaries

1.1 Syntax and Semantics of Propositional Dynamic Logic

Definition: Syntax
Fix some set of propositional letters P.
The syntax of Propositional Dynamic Logic is:

φ ::= p | ¬φ | φ ∨ φ | φ ∧ φ | φ→ φ | 〈α〉φ
α ::= a | α;α | α ∪ α | α∗ | 1 | 0

where p ∈ P. We write PROG for the set of all programs α and PDL for the set of all formulas
φ according to this definition. The latter should not be confused with PDL, the set of all
validities which we define later.

We also define the box operators as abbreviations: For any φ and α, let [α]φ := ¬〈α〉¬φ.

Note that usually also the test-programs φ? for any formula φ are included. Any axiomatization
of PDL without tests can simply be extended using the scheme 〈φ?〉ψ ↔ (φ → ψ). Still, we
have reasons not to bother with tests here: Our main interest is Craig Interpolation as defined
below and by now it is well known that PDL without tests has this property iff PDL with
tests has it (Theorem 10.6.2 in [8, p. 495]).

Definition: Semantics
The semantics of PDL can be given with Kripke models.
A PDL-model is a tupleM = (W,R, V ) where

• W is a non-empty set of worlds (also called states)

• R = (Rα)α is a family of binary relations on W such that

– Rα;β = Rα;Rβ (consecution)

– Rα∪β = Rα ∪Rβ (union)

– Rα∗ = (Rα)∗ (reflexive-transitive closure)

– R1 = {(s, t) ∈ W ×W | s = t} (identity on W )

– R0 = ∅ (empty relation)

Note that here the symbols ;, ∪ and ∗ are twofold: On the left side of = they are part of
the language we are defining. On the right side their meaning is given by our set-theoretic
meta-theory.

• V : P→ P(W ) is a valuation function.

We say that such a model is based on the frame (W,R).

Definition: Truth
The satisfaction relation � between pointed models and formulas is defined recursively:

• M, w � p iff w ∈ V (p)

• M, w � ¬φ iffM, w 6� φ

• M, w � φ ∨ ψ iffM, w � φ orM, w � ψ
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• M, w � φ ∧ ψ iffM, w � φ andM, w � ψ

• M, w � φ→ ψ iffM, w 6� φ orM, w � ψ

• M, w � 〈α〉φ iff there is a w′ ∈ W such that wRαw
′ andM, w′ � φ.

If we haveM, w � φ we say that φ is (locally) true at w inM.
When it is clear whichM we are considering, we also write w � φ.

Definition: Global Truth and Validity
We writeM � φ and say φ is globally true in M iff it is true in every world of this model. We
write � φ or say φ is valid iff φ is true in every world in every model, i.e. for allM = (W,R, V )
and for all w ∈ W we haveM, w � φ. The set of all valid formulas is PDL.

Definition: Consequence
We say that ψ is a local consequence of φ iff � φ→ ψ.
We say that ψ is a global consequence of φ iff: For allM = (W,R, V ): IfM � φ, thenM � ψ.
We say that ψ is a superglobal consequence of φ iff: If � φ, then � ψ.

Consequence Lemma
Local consequence implies global and superglobal consequence.
Global consequence implies superglobal consequence.

1.2 Size and Complexity

Definition: Size of a formula
The size of a formula is the number of symbols it contains, counting all propositional letters,
programs and boolean connectives. For example we have size(p) = 1 and size((p → [a]q) →
r) = 6. The size of a finite set of formulas f is the sum of their sizes. We abbreviate both
definitions with |φ| or |f | respectively.

Definition: Lexicographic Order and Addition
We define the irreflexive lexicographic order (N× N, <) by

(a, b) < (c, d) :⇐⇒ (a ≺ c ∨ (a = c ∧ b ≺ d))

where ≺ is the irreflexive order on the natural numbers.
Furthermore, let (a, b) + (c, d) := (a+ c, b+ d).

Definition: Complexity of a formula
For any PDL-formula φ, its complexity C(φ) is a pair of numbers of which the sum is the
maximum of nested connectives in φ where we count ∗ separately in the first coordinate and all
other connectives in the second. Formally, we define C : PDL∪PROG → N×N recursively:

C(p) = (0, 1)
C(φ ∧ ψ) = (0, 1) + max{C(φ), C(ψ)}
C(φ ∨ ψ) = (0, 1) + max{C(φ), C(ψ)}
C(φ→ ψ) = (0, 1) + max{C(φ), C(ψ)}
C(〈τ〉φ) = C(τ) + C(φ)

C(a) = (0, 1)
C(σ; τ) = (0, 1) + max{C(σ), C(τ)}

C(σ ∪ τ) = (0, 1) + max{C(σ), C(τ)}
C(σ∗) = (1, 0) + C(σ)

where max denotes a maximum according to the lexicographic order.
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Examples

• C( 〈a〉p ∧ q ) = (0, 3)

• C( (r → 〈a; b〉p) ∧ 〈b∗〉q ) = (1, 2)

• C( 〈((a; b)∗; c)∗〉p ∧ 〈a∗〉(p→ (q ∧ 〈d〉r)) ) = (0, 1) + max{(2, 4), (1, 5)} = (2, 5)

Furthermore, the boolean complexity Cb of a formula is the maximum number of nested boolean
connectives. The modal complexity Cm of a formula is the maximum number of nested programs
in nested modal operators. Formal definitions for these two can be obtained by replacing 1s
with 0s in the left or right column above respectively.

Because the lexicographic order is well-founded, via C it also induces a well-order on all PDL-
formulas and allows us to prove claims about all formulas φ by induction on their C(φ).

Our definition of complexity is mainly a preparation for proofs in section 3. It will enable us
to apply induction hypotheses to formulas with more nested connectives than the the current
one as long as they contain less nested stars.

1.3 Craig’s Interpolation Theorem

Definition: Language of a formula
For any PDL-formula φ, its language L(φ) is the set of all atomic propositions and programs
occurring in it. Formally, we define recursively:

L(p) = {p}
L(φ ∧ ψ) = L(φ) ∪ L(ψ)
L(φ ∨ ψ) = L(φ) ∪ L(ψ)
L(φ→ ψ) = L(φ) ∪ L(ψ)
L(〈τ〉φ) = L(τ) ∪ L(φ)

L(a) = {a}
L(σ; τ) = L(σ) ∪ L(τ)

L(σ ∪ τ) = L(σ) ∪ L(τ)
L(σ∗) = L(σ)

Definition: Craig Interpolation
A logic, given as the set of its valid formulas Λ has Craig Interpolation (CI ) iff for any two
formulas φ and ψ such that φ→ ψ ∈ Λ, there is a formula µ such that:

• L(µ) ⊆ L(φ) ∩ L(ψ),

• φ→ µ ∈ Λ

• and µ→ ψ ∈ Λ.

In this case we also call µ an interpolant for φ→ ψ.

1.4 History

At least the following attempts have been made to prove that PDL has CI.

• Daniel Leivant in a paper from 1981 [11],

• Manfred Borzechowski in his Diplomarbeit from 1988 [3],

• Tomasz Kowalski in a paper from 2002 [6].
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Leivant and Borzechowski are both aiming for a proof theoretic argument, using a sequent
calculus and a tableaux system respectively. Kowalski on the other hand tried to employ
duality results about free dynamic algebras, but his paper has been retracted in 2004 [7] after
Yde Venema pointed out a flaw. Unfortunately there is no publication describing the problem
or how it could be fixed.

Also the other two proofs by Leivant and Borzechowski have been criticized and the common
opinion in the field seems to be that the question is still open. For example, see the chapter
“The Unanswered Question” by Marcus Kracht [8, p. 493ff], the concluding remarks in Chapter
4 of [5, p. 99] or take the following quote from a paper by Johan van Benthem:

“The interpolation theorem has been claimed for [PDL] several times since the 1970s,
including published papers in the Journal of Symbolic Logic, but so far, no proof
has stood up to scrutiny.”[2, p. 456]

1.5 Uniform Interpolation

To avoid confusion we distinguish Craig Interpolation from the stronger property called Uniform
Interpolation which is not an open question for PDL any more.

Definition
A logic Λ has Uniform Interpolation iff for all formulas φ and all subsets A ⊆ L(φ) of the
language of φ there is a formula θA such that:

• L(θA) ⊆ A

• φ→ θA ∈ Λ

• For all ψ such that L(φ) ∩ L(ψ) ⊆ A and φ→ ψ ∈ Λ we also have θA → ψ ∈ Λ.

Note that θA only depends on the language of ψ and therefore on less information than µ
in the definition of Craig Interpolation above. Hence Uniform Interpolation implies Craig
Interpolation. However, this does not provide a method to show that PDL has CI because it
has been shown in [1, p. 320] that uniform interpolation does not hold for PDL.

2 Leivant’s Proof

In this section we analyze the proof by Daniel Leivant in [11]. Inspired by the following objection
we pay special attention if the proof contains an unwanted switch to a finitary variant ofPDL.

“Twice a solution has been announced, in [[11]] and [[3]], but in neither case was it
possible to verify the argument. The argument of Leivant makes use of the fact that
if φ `PDL ψ then we can bound the size of a possible countermodel so that the star
a∗ only needs to search up to a depth d which depends on φ and ψ. Once that is
done, we have reduced PDL to EPDL which definitely has interpolation because
it is a notational variant of polymodal K.”[8, p. 493]

A part of Leivant’s proof which Kracht might mean here is the finitary rule ∗R and we discuss
it in section 2.5. Because finitary variants of PDL are also interesting in isolation, we discuss
them separately in section 3. For a proof of Craig Interpolation for polymodal K, see [12].
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2.1 Language and Notation

It is important to note that Leivant does not use the full language we defined in section 1.1.
For all the systems presented, the only basic boolean connectives are → and ¬. The classical
systems D and S still fit to our definitions because we can define define the abbreviations
φ ∧ ψ := ¬(φ → ¬ψ) and φ ∨ ψ := ¬φ → ψ. Furthermore, Leivant does not include the
programs 1 and 0 in the language but uses them in the proof working on linear transformations.
This does not pose a problem because one can always find equivalent formulas without these
programs.

We adopt the following notational conventions from the original proof in [11].

• X, Y , Z and α, β, γ are variables for (possibly complex) formulas and programs

• f and g are variables for sets of formulas

• In a sequent calculus we write sequents as f ` g.

• Such a sequent is initial iff f ∩ g 6= ∅.

• A proof is a tree of sequents such that (i) all branches are finite, (i) the leaves are initial
or from a given set of premises and (iii) all connections between nodes are instances of
the rules of the given proof system.

• Depending on the rules, the tree might have infinitely many branches.

• The root is called the conclusion and proved by the tree.

• To define a new rule we annotate it with its name on the left whereas annotations on the
right side indicate the application of a rule.

2.2 Segerberg’s Axioms - The system S

Leivant starts out with a variant of Segerberg’s axiomatization of PDL (See [13] for the origi-
nal). The system S consists of the following schemes and rules.

Axiom schemes

A1 All propositional tautologies.

A2 [α]>

A3 [α](X ∧ Y )↔ [α]X ∧ [α]Y

A4 [α; β]X ↔ [α][β]X

A5 [α ∪ β]X ↔ [α]X ∧ [β]Y

A6 [α∗]X ↔ X ∧ [α][α∗]X

Inference rules

R1 If ` X and ` X → Y , then ` Y
(Detachment)

R2 If ` X → Y , then ` [α]X → [α]Y
(Generalization)

R3 If ` X → [α]X, then ` X → [α∗]X
(Induction)

Note that we removed the axiom scheme “A7 [?X]Y ↔ (X → Y )” because we are not concerned
with tests.

It is easy to check that S is sound for the Kripke semantics described above. One main goal of
Leivant is to show the completeness of S.
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2.3 Overview: Leivant’s system D

Leivant presents the following sequent calculus called D. The most notable feature is the rule
∗R which takes ω many premises. Moreover, note the absence of the cut rule.

f,X ` g(¬R)
f, ` g,¬X

f ` g,X(¬L)
f,¬X ` g

f,X ` g, Y(→ R)
f ` g,X → Y

f ` g,X f, Y ` g(→ L)
f,X → Y ` g

f ` g, [α][β]X
(;R)

f ` g, [α; β]X

f, [α][β]X ` g
(; L)

f, [α; β]X ` g

f ` g, [α]X f ` g, [β]X
(∪R)

f ` g, [α ∪ β]X

f, [α]X, [β]X ` g
(∪L)

f, [α ∪ β]X ` g

f,X, [α][α∗]X ` g
(∗L)

f, [α∗]X ` g

f ` g, φ f ` g, [α]φ f ` g, [α]2φ . . .
(∗R)

f ` g, [α∗]φ

f ` X(GEN)
[α]f ` [α]X

f ` g(WEAK)
f ′ ` g′

where f ⊆ f ′ and g ⊆ g′.

2.4 A complete sequent calculus for PDL and PEL

In order to show that D is semantically complete for PDL, Leivant presents a variant of
PDL called PEL in which the executions of programs are spelled out. Again, Leivant gives
an infinitary sequent calculus called E and shows that PDL and PEL are equivalent in the
following sense.

Proposition [11, 2.2.1]
E is sound for PDL: If f `E g then

∧
f →

∨
g is true in every state of every PEL- and thus

PDL-model.

The system PEL is used to show that D is complete which then is one of the crucial steps
towards the completeness of S and interpolation. For the rest of this report we rely on the
following Lemma and Theorem but leave it open to check the proofs in [11, p. 361-363].

Lemma [11, 2.3.3]
The system D is complete for E.

Theorem [11, 2.4.2]
E and D are semantically complete.
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2.5 Obtaining a finitary proof system for PDL

A crucial part of the system D is the infinitary rule

f ` g,X f ` g, [α]X f ` g, [α][α]X · · ·
(∗R)

f ` g, [α∗]X

where the dots indicate that we have all sequents f ` g, [α]nX for n ∈ N as premises.

In his section [11, 2.5] Leivant argues that the proof system D can be turned in to a finitary one
where proofs are trees of finite length, both horizontally and vertically. It is not clear at this
point if the completeness and interpolation proofs depend on this claim and Leivant does not
explicitly say in which (infinitary or finitary) system the rest of the paper is supposed to take
place. However the rule replacement we will discuss now is a good candidate for what Kracht
could have meant in the quote on page 6. Hence it deserves some attention.

It is a well-known result that PDL has the finite-model property (FMP).
An upper bound of the model size was found by Fischer and Ladner in [4].

Finite-Model Theorem (See [4, 3.2])
Let φ be a satisfiable formula. Then there is a modelM = (W,R, V ) and a world w ∈ W such
thatM, w � φ and |W | ≤ 2size(φ).

Using the Finite-Model Theorem, Leivant shows that the validity of a PDL-formula of the form
[α∗]φ already follows from the validity of finitely many formulas of the form [αn]φ. We make
this more explicit in the following theorem.

Theorem (implicit in [11, 2.5])
For any formula φ and any program α: If [α]nφ is valid for all n ≤ k := 2size([α∗]φ), then [α∗]φ is
valid. In other words: [α∗]φ is a superglobal consequence of

∧
n≤k[α]nφ where k := 2size([α∗]φ).

Proof. We have � [α]nφ for all n ≤ k = 2size([α∗]φ). In order to reach a contradiction, suppose
[α∗]φ is not valid. Then there is a model which falsifies it at some state. In particular, by
[4, 3.2] there is such a model of size k. Fix such a model M = (W,R, V ), s 2 [a∗]φ. Then
s � ¬[a∗]φ, thus s � 〈a∗〉¬φ. Hence there is a chain of states s = s0Rαs1Rα . . . Rαsm 2 X for
some m ∈ N. We consider two cases.

• m ≤ k. The first supposition gives us s � [α]mφ. It follows that sm � φ.

• m > k. Then because |W | = k there must be a subchain of s0, . . . , sm which still starts
at s0 and ends at sm but has maximally k elements. Intuitively this subchain is obtained
by “removing loops”. Now the first case applies to the subchain which implies sm � φ.

In any case it follows that sm � φ, a contradiction!

2

Leivant then claims that the last theorem allows us to replace the infinitary rule ∗R in D with
the following finitary one:1

1In [11] the first premise is [α]X instead of X. We consider this a typo.
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f ` g, φ f ` g, [α]φ · · · f ` g, [α]kφ
(∗R≤) where k = 2|f |+|g|+|φ|.

f ` g, [α∗]φ

This seems strange, because the inference rule then can also be be applied for formulas which
are not valid but merely follow from f and the negation of g. Hence the previous theorem does
not suffice to justify this step for arbitrary f and g.

However, we can prove the following stronger version of the Theorem in which the sets f and
g play the appropriate role to settle these worries.

Theorem
For any sets of formulas f and g and any formula φ: If

∧
f →

∨
(g ∪ {[α]nφ}) is valid for all

n ≤ k = 2|f |+|g|+|φ|, then
∧
f →

∨
(g ∪ {[α∗]φ}) is valid.

Proof. Note that it suffices to consider a case where both f and g contain a single formula, for
otherwise we can consider their conjunction and disjunction respectively. Let ψ and χ be these
formulas and assume that ψ → χ∨ [α]nφ is valid for all n ≤ k = 2|ψ|+|χ|+|φ|. In order to reach a
contradiction, suppose that ψ → χ∨ [α∗]φ is not valid. Then there is a model which falsifies it.
In particular by [4, 3.2] there is such a model of size k. Fix such aM, w 2 ψ → χ∨ [α∗]φ. Then
M, w � ψ andM, w 2 χ andM, w 2 [α∗]φ. From the first and second and our assumption we
get that M, w � [α]nφ for all n ≤ k. By the third there is a chain w = w0

α→ · · · α→ wm 0 φ
and again we can consider two cases.

• m ≤ k. Then we have w0 � [α]mφ. It follows that wm � φ.

• m > k. Then because our model is of size k there must be a subchain of w0, . . . , wm
which still starts at w0 and ends at wm but has maximally k elements. Then the first
case applies to this subchain and it follows that wm � φ.

In any case it follows that wm � φ, a contradiction!

2

We can conclude that the finitary rule is admissible, i.e. it is not stronger than the original.
Furthermore, it is easy to see that the rule is not weaker than the original: Suppose we have a
proof using the infinitary rule. Each occurrence can then be replaced with the finitary rule by
removing the infinite many premises, keeping only the appropriate finite amount determined
by the size of the formulas.

2.6 Intuitionistic PDL

To “kill two birds with one stone”[11, p. 365], namely dealing with both classical and intuition-
istic PDL, Leivant considers constructive/intuitionistic versions of the systems S and D, called
CS and CD respectively.

The system CS only differs from S in the axiom scheme A1, namely it contains only the intu-
itionistic propositional tautologies. The sequent calculus CD is “obtained by restricting the kind
of sequents f ` g used to ones where |g| ≤ 1”[11, p. 366].2 We list all the rules in section 2.7.
By standard proof theoretic methods we can show that the intuitionistic and classical systems
are related as follows.

2Please note that here |g| is not the size of g as we defined above but just the cardinality of the set g.

10



Definition
For any X, let Xo result from X by inserting ¬¬ in front of atomic subformulas and in front
of each logical operator.

Theorem [11, 3.2.1]
X is a theorem of S iff Xo is a theorem of CS.

Theorem [11, 3.2.2]
X is a theorem of D iff Xo is a theorem of CD.

2.7 Overview: The System CD

The following rules constitute the constructive/intuitionistic system in which Leivant’s com-
pleteness and interpolation proofs take place. Again we leave out the rules ?R and ?L for tests
and we only have the boolean connectives ¬ and →. Hence this is not a proof system for
constructive PDL with all connectives because there “none of the propositional connectives ¬,
∧, ∨, →, is definable in terms of the others”[11, p. 366].

Proofs in CD are very similar to those in D as we described in 2.1, namely trees with the
conclusion as their root, initial sequents as leaves and all connections according to the following
rules. An additional demand for all rules is g = ∅ or g = {Z} for some formula Z.

f,X `(¬R)
f, ` ¬X

f ` X(¬L)
f,¬X `

f,X ` Y(→ R)
f ` X → Y

f ` X f, Y ` g(→ L)
f,X → Y ` g

f ` [α][β]X
(;R)

f ` [α; β]X

f, [α][β]X ` g
(; L)

f, [α; β]X ` g

f ` [α]X f ` [β]X
(∪R)

f ` [α ∪ β]X

f, [α]X, [β]X ` g
(∪L)

f, [α ∪ β]X ` g

f,X, [α][α∗]X ` g
(∗L)

f, [α∗]X ` g

f ` φ f ` [α]φ . . . f ` [α]kφ
(∗R)

f ` [α∗]φ
where k = 2|f |+|g|+|φ|

f ` X(GEN)
[α]f ` [α]X

f ` g(WEAK)
f ′ ` g′

where f ⊆ f ′ and g ⊆ g′.
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2.8 Counting in S

As a preparation for the completeness and interpolation proof, Leivant states:

Lemma [11, 4.1.1]
The following schemata are provable in S for any formula X and any program α.

(i) [(αw)∗][α]X → [α][(αw)∗]X

(ii)
∧
k<w

[αk][(αw)∗]X → [α∗]X

(iii) If s1, . . . , sw ∈ N are distinct modulo w, then ∧
i<max{s1,...,sk}

[α]iX ∧
∧
i<k

[αsi ][(αw)∗]X

→ [α∗]X

(We reformulate this formula to clarify that one needs exactly w many si. While this is
not implied by Leivant’s notation, the formula is only valid for this case and he only uses
the scheme in such situations.)

Note that Leivant claims this before having (and in order to show!) completeness of S for PDL.
Hence purely syntactic proofs of the schemata are needed at this stage.

To see that (i) and (ii) are in PDL and hence the Lemma does not contradict the already given
soundness of S, note that N+ 1 = 1 +N. and

⋃
k<w(k+ (w ·N)) = N respectively. Instances of

(iii) can be seen to be in PDL because for any s1, . . . , sn distinct modulo n = w we have

{x | x < max{s1, . . . , sk}} ∪ {sk + w · n | k ∈ {1, . . . , w} ∧ n ∈ N) = N

2.9 Proofs from non-initial sequents

Definition
A proof of f ` X from a set F of sequents is a proof-figure of CD where all leaves are initial or
elements of F . The positive closure of a set f of formulas, denoted by PC(f), is the smallest
set g ⊇ f such that for all formulas X and Y and all programs α and β:

• If (X → Y ) ∈ g, then Y ∈ g.

• If [α]X ∈ g, then X ∈ g.

• If [α; β]X ∈ g, then [α][β]X ∈ g.

• If [α ∪ β]X ∈ g, then [α]X ∈ g and [β]X ∈ g.

• If [α∗]X ∈ g, then [α][α∗]X ∈ g.

• (If [X?]Y ∈ g, then Y ∈ g.)

Note that we do not need clauses for disjunction or conjunction here because these are not part
of the language of CD. Also note that if |f | < ω, then also |PC(f)| < ω.

The following two Lemmas play a crucial role in both Leivant’s completeness and interpolation
proofs. Unfortunately we could not reproduce the exact statement and proof for the first one
as it appears in [11]. In particular we wonder why the formula [α]rX should ever occur in
a proof of f ` [α]q, because CD does not have rules to remove boxes again in order to gain
something which was not already given before. Furthermore, the application of the Lemma
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later on suggests a typo, namely that the the resulting sequent should be f ` [α]mq for any
m > r. What we state below and refer to in the rest of the report is thus not a quote from [11]
but a variant of the Theorem as we think it should be phrased and is applied later on. Both
the revised statement for induction loading and the proof are from Yde Venema.

Lemma [11, 4.2.1] (revised)
Suppose P is a CD-proof of f ` [β1] . . . [βk][α]mq from {fi ` q}i where q does not occur in f
and all βis are subprograms of α. If f ′ ` [α]rq is a sequent in P under a non-initial leaf, then
PC(f ′) ⊆ PC(f).

Proof. By tree-induction on P , i.e. we distinguish which rule was applied in the last step.
Easy cases are → L, ; L, ∪L and ∗L. If the last step is WEAK, then it introduces a formula
[β1] . . . [βk][α]mq on the right side which was previously empty. Then [α]rq can not occur in P
because q does not occur in f . The interesting case is ∗R and we consider two possibilities.

First, suppose k = 0, i.e. there are no βis. Then α = γ∗ for some program γ and P ends with:

P0

f ` [γ∗]m−1q

P1

f ` [γ][γ∗]m−1q · · ·
Pk′

f ` [γk
′
][γ∗]m−1q

f ` [γ∗][γ∗]m−1q

Now, if r = m, then f ′ ` [γ∗]r can only be the last line and f = f ′. If r < m, then a sequent
f ′ ` [γ∗]r can only occur in the proof parts Pi which are covered by the induction hypothesis.

Alternatively, w.l.o.g, suppose k = 1. Then P ends like this:

P0

f ` [α]mq

P1

f ` [β][α]mq · · ·
Pk′

f ` [βk
′
][α]mq

f ` [β∗][α]mq

Now again a sequent f ′ ` [α]r can only occur in the proof parts Pi.

2

Definition
We denote the result of substituting X for q in a proof P by P [X/q].

Lemma [11, 4.2.2]
In CD: Suppose P is a proof of f ` [α]rX from {fi ` X}i where X 6∈ PC(f). Then there is a
proof P ′ of f ` [α]rq from {f ′i ` q}i such that P = P ′[X/q].3

Intuitively, 4.2.2 tells us that a CD-proof of f ` [α]rX where X is not in the positive closure of
f will never take X apart and therefore can be obtained from substituting X for q in a proof
of f ` [α]rq.

Proof. By tree-induction on P . In the induction step we have to consider all CD-rules (see
section 2.7) which can end with a sequent of the form f ` [α]rX, namely → L, ;R, ; L, ∪R, ∪L,
∗L, ∗R, GEN and WEAK. We will treat them all in detail because there are subtle differences
between some of them and we can see that the different cases motivate the definition of the
positive closure PC(·) above.

3Leivant writes that P ′ is a proof of f ` [α]q, but this contradicts the substitution, so we assume f ` [α]rq.
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For each case we show that the induction hypothesis can be applied to a part of P . To allow
this the parts have to end with a sequent in which the consequent is not in the positive closure
of the antecedent set. Let {fi ` X}i be the set of premises of P .

1. Suppose P ends with → L:
QL

f ` Z

QR

Y ` [α]rX
(→ L)

f, Z → Y ` [α]rX

Then by PC(Y ) ⊂ PC(f, Z → Y ) 63 X we can apply the induction hypothesis to the part
QR. This gives us a proof Q′R of Y ` [α]rq from a subset of {fi ` q}i where q is new such
that QR = Q′R[X/q]. Hence the following is the desired P ′:

QL

f ` Z

Q′R
Y ` [α]rq

(→ L)
f, Z → Y ` [α]rq

2. Suppose P ends with ;R:
Q

f ` [α][β][α; β]r−1X
(;R)

f ` [α; β]rX

Note that [β][α; β]r−1X 6∈ PC(f) because otherwise we would have X ∈ PC(f). Hence
the induction hypothesis (for r = 1, i.e a formula of the shape [α]Y ) can be applied to Q
and we get a proof Q′ of f ` [α]q from {fi ` q}i such that:

Q = Q′[[β][α; β]r−1X/q]

This substitution can be rewritten into two steps:

Q =
(
Q′[[β][α; β]r−1q/q]

)
[X/q]

Leaving out [X/q], we can then use Q′[[β][α; β]r−1q/q] as part of the desired P ′:

Q′[[β][α; β]r−1q/q]

f ` [α][β][α; β]r−1q
(;R)

f ` [α; β]rq

3. Suppose P ends with ; L:
Q

f, [β][γ]Y ` [α]rX
(; L)

f, [β; γ]Y ` [α]rX

Then PC(f, [β][γ]Y ) = PC(f, [β; γ]Y ) by definition of PC(·). Hence X 6∈ PC(f, [β][γ]Y )
and thus we can apply the induction hypothesis to Q and obtain a proof Q′ such that
Q = Q′[X/q]. We immediately have P ′:

Q′

f, [β][γ]Y ` [α]rq
(; L)

f, [β; γ]Y ` [α]rq

14



4. Suppose P ends with ∪R:
Q0

f ` [α][α ∪ β]r−1X

Q1

f ` [β][α ∪ β]r−1X
(∪R)

f ` [α ∪ β][α ∪ β]r−1X

This is similar to the ;R-case. Note that [α ∪ β]r−1X 6∈ PC(f) because otherwise we
would have X ∈ PC(f). Hence we can apply the induction hypothesis to Q0 and Q1 to
obtain Q′0 and Q′1 such that

Q0 = Q′0[[α ∪ β]r−1X/q] and Q1 = Q′1[[α ∪ β]r−1X/q]

Both substitutions can be split in two steps:

Q0 =
(
Q′0[[α ∪ β]r−1q/q]

)
[X/q] and Q1 =

(
Q′1[[α ∪ β]r−1q/q]

)
[X/q]

Leaving out the [X/q] we have the two needed parts for P ′ :

Q′0[[α ∪ β]r−1q/q]

f ` [α][α ∪ β]r−1q

Q′1[[α ∪ β]r−1q/q]

f ` [β][α ∪ β]r−1q
(∪R)

f ` [α ∪ β][α ∪ β]r−1q

5. Suppose P ends with ∪L:
Q

f, [β]Y, [γ]Y ` [α]rX
(; L)

f, [β ∪ γ]Y ` [α]rX

Note that PC(f, [β]Y, [γ]Y ) = PC(f, [β ∪ γ]Y ) by definition of PC(·). Hence we also have
X 6∈ PC(f, [β]Y, [γ]Y ) and thus we can apply the induction hypothesis to Q and obtain a
proof Q′ such that Q = Q′[X/q]. Again, we immediately have P ′:

Q′

f, [β]Y, [γ]Y ` [α]rq
(; L)

f, [β ∪ γ]Y ` [α]rq

6. Suppose P ends with ∗L:
Q

f, Y, [β][β∗]Y ` [α]rX
(; L)

f, [β∗]Y ` [α]rX

Note that PC(f, Y, [β][β∗]Y ) = PC(f, [β∗]Y ) by definition of PC(·). Hence we also have
X 6∈ PC(f, Y, [β][β∗]Y ) and thus we can apply the induction hypothesis to Q and obtain
a proof Q′ such that Q = Q′[X/q]. Once more, we immediately have P ′:

Q′

f, Y, [β][β∗]Y ` [α]rq
(; L)

f, [β∗]Y ` [α]rq

7. Suppose P ends with ∗R:
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Q0

f ` [α∗]r−1X

Q1

f ` [α][α∗]r−1X

Q2

f ` [α]2[α∗]r−1X . . .
(∗R)

f ` [α∗][α∗]r−1X

Note that [α]k[α∗]r−1X 6∈ PC(f) for all k because otherwise we would have X ∈ PC(f).
Hence the induction hypothesis can be applied to all Qks. For every k ∈ N we get a proof
Q′k of f ` [α∗]k[α∗]r−1q from {fi ` q}i such that Qk = Q′k[[α

∗]r−1X/q]. Using them, we
can assemble the desired P ′:

Q′0
f ` [α∗]r−1q

Q′1
f ` [α][α∗]r−1q

Q′2
f ` [α]2[α∗]r−1q . . .

(∗R)
f ` [α∗][α∗]r−1q

8. Suppose P ends with GEN. Then f = [α∗]g for some set g and P has this shape:
Q

g ` [α∗]r−1X
(GEN)

f ` [α∗][α∗]r−1X

By X 6∈ PC(f) = PC([α∗]g) we also have X 6∈ PC(g). Hence the induction hypothesis can
be applied to Q, obtaining a Q′ such that Q = Q′[X/q] and we can assemble P ′:

Q′

g ` [α∗]r−1q
(GEN)

f ` [α∗][α∗]r−1q

9. Suppose P ends with WEAK. Then f ⊇ g for some set g and P has this shape:
Q

g ` [α∗]rX
(WEAK)

f ` [α∗]rX

Then we also have PC(f) ⊇ PC(g) 63 X and can apply the induction hypothesis to obtain
Q′ such that Q = Q′[X/q] and P ′:

Q′

g ` [α∗]rq
(WEAK)

f ` [α∗]rq

2

2.10 Completeness and Closure under Iteration

Using the machinery discussed so far, Leivant gives a new proof of the completeness of S for
PDL via D. Although this proof is not our main interest we will discuss its main step because
it introduces the proof technique also used for showing Interpolation later. In fact, Leivant
only refers to the completeness proof at several steps.

Furthermore, Leivant seems to employ the following general property of CD: The rules listed in
section 2.7 imply that a formula is built “step-by-step”. To clarify this central step in the proof
we first single out the following Conjecture. Probably an elegant rephrasing of the Lemma [11,
4.2.1] would imply this additional claim.
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Step-by-Step Conjecture
Suppose P is a CD-proof of f ` [α]nX. Then P consists of proof parts P0, . . . , Pn which build
up the [α]s “step by step” in the following sense.

• P0 is a sequence of proofs of the elements of {fj ` X}j∈I1 from the empty set, i.e. only
using initial sequents as leaves.

• For each k such that 1 ≤ k ≤ n the part Pk is a sequence of proofs of the elements of
{fj ` [α]kX}j∈Ik from initial sequents and {fj ` [α]k−1X}j∈Ik−1

.

• All fj are sets of formulas such that PC(fj) ⊆ PC(f).

In the following proofs we adopt Leivant’s notation which depicts this situation as follows.

P0

{fj ` X}j∈I0
P1

{fj ` [α]X}j∈I1
P2

{fj ` [α]2X}j∈I2
...

{fj ` [α]n−1X}j∈In−1

Pn
f ` [α]nX

Lemma [11, 4.3.1]

(i) If P is a proof in CD deriving f ` X, then f `CS X.
(I.e.: CS is complete for CD.)

(ii) If P is a proof in CD deriving f ` [α]q from {fi ` q}i∈I , and fi `CS X for all i ∈ I, then
f `CS [α]X.

Proof. By tree-induction on P , simultaneously for (i) and (ii). The base case is trivial because
for an initial sequent there is a corresponding one line CS-proof. For the induction step, the
critical case is ∗R for (i). Furthermore, as Leivant writes, treating an arbitrary proof ending
with this rule is also sufficient to prove (ii) at the same time.

Suppose P ends with ∗R. Let M be the number of needed premises according to the finitary
rule ∗R which we discussed in section 2.5. Then there are proofs P0, . . . , Pm which occur as
parts of P :

P0

f ` X

P1

f ` [α]X · · ·
PM

f ` [α]MX
(∗R)

f ` [α∗]X

Let v := 2|PC(f)|, d ∈ ω such that [α]dX 6∈ PC(f) and h := 1 + v + d. W.l.o.g. we can now
assume that h ≤ M .4 For the remainder of the proof we will focus on the part Ph together
with its conclusion f ` [α]hX as they appear in P :

4This is because we know from section 2.5 that the proof system with the finitary and infinitary rule are
equivalent.
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P0

f ` X · · ·
Ph

f ` [α]hX · · ·
PM

f ` [α]MX
(∗R)

f ` [α∗]X

Our motivation for the choice of h is that Ph should belong enough to apply both Lemma 4.2.1
and Lemma 4.2.2 to it. By our choice of h, Ph is a proof of f ` [α]1+v[α]dX:

Ph
f ` [α]1+v[α]dX

Now Leivant seems to employ the Step by Step Conjecture from above. In our case 1 + v + d
many stacked [α] have to be introduced one after the other. In particular we can split the proof
below the last occurrences of [α]dX:

Qi

{fi ` [α]dX}i
R

f ` [α]1+v[α]dX

Here the (fi)i are some sets such that PC(fi) ⊆ PC(f) for all i. Furthermore R (together with
the lines above and below) is a proof of f ` [α]1+v[α]dX from {fi ` [α]dX}i. Remember that
a proof from any set can still have additional initial leaves. Hence R should not be thought of
as a subtree but rather a sequence of subtrees. Because [α]dX 6∈ PC(f), Lemma 4.2.2 tells us
that R will not take [α]dX apart and the whole proof has to be of this form:

Qi

{fi ` [α]dX}i
R′[[α]dX/q]

f ` [α]1+v[α]dX

where q is new and R′ is a proof of f ` [α]1+vq from {fi ` q}i. Note that R′ itself by the Step
by Step Conjecture has to be of this form:

{fj ` q}j∈I0
R1
j

{fj ` [α]q}j∈I1
R2
j

{fj ` [α]2q}j∈I2
...

{fj ` [α]vq}j∈Iv
R1+v
j

f ` [α]1+vq
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Note that we are still dealing with with branching trees. The proof part R2
j for example is a

sequence of trees where the leaves are initial or in {fj ` [α]q}j∈I1 . Moreover for every element
of {fj ` [α]2q}j∈I2 there is a tree in R2

j which has this element as its root.

By 4.2.1 we have for all c ≤ v and all j ∈ Ic that fj ⊆ PC(fj) ⊆ PC(f). Hence we get:

|{ {fj | j ∈ Ic} | c ≤ v}| ≤ |P(PC(f)| = 2|PC(f)| = v < v + 1 = |{c | 0 ≤ c ≤ v}|

Fact (♥)
For some m 6= n we have {fj | j ∈ Im} = {fj | j ∈ In}.
Therefore by reenumeration we can assume Im = In.

W.l.o.g. we assume m < n. The proof parts Rm, . . . , Rn constitute a proof of {fj ` [α]nq}j∈In
from {fj ` [α]mq}j∈Im . Now note that theses parts add r := n −m many boxes in front of q,
but by ♥ the premises in their (non-initial) leafs and roots are the same. We call these parts
Tj, i.e. for j ∈ In we have that Tj is a proof of fj ` [α]r[α]mq from {fj′ ` [α]mq}j′∈Im .

Note that we also have r < n < v.

Moreover, q 6∈ PC(f) because it was new. Hence we have by 4.2.1 that Tj also does not take
[α]mq apart, i.e. for all j ∈ In there is a proof T ′j of fj ` [α]rp from {fj′ ` p}j′∈Im such that
Tj = T ′j [[α]mq/p].

Now we will apply both induction hypotheses to the T ′j proofs. This is possible because they
are shorter than P .

Let Y =
∨
j∈In

∧
fj.5 Then we immediately have fj `CS Y for all j ∈ In.

Together with the T ′js (where j ∈ In) this allows us to apply (ii) and we get fj `CS [α]rY .
Furthermore by disjunction-elimination (which is provable in CS), we get Y `CS [αr]Y and by
the induction rule6 of S this implies for all j ∈ In:

fj `CS [(αr)∗]Y

By applying (i) for all k ∈ Im we have fk `CS [α]mX. Because Im = In also for all j ∈ In
we have fj `CS [α]mX. Again by disjunction-elimination this implies Y `CS [α]mX, and by
necessitation we get:

[(αr)∗]Y `CS [(αr)∗αm]X

Combining the last two results by transitivity of `CS we have:

fj `CS [(αr)∗αm]X

Now let s := h − n which means s is the number of boxes that are introduced in the remain-
ing part of Ph, after sequents with the consequent [α]nX occur. By applying the induction
hypothesis (ii) s many times to fj `CS [(αr)∗αm]X and this remaining part of Ph we obtain:

f `CS [αs(αr)∗αm]X

5In Leivant’s system CD the disjunction should probably be considered an abbreviation for an equivalent
formula using negation and conjunction.

6See R3 in section 2.2. Note that CS differs in (propositional) axioms but has the same rules as S.
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By m many applications of Lemma 4.1.1(i) (see page 12) this implies:

f `CS [αs+m(αr)∗]X

We are almost done. Only the additional αs+m is not wanted and Lemma 4.1.1 (iii) seems to
be the obvious way to remove it. To employ it, we just have to repeat the proof r many times
with different values of h. This will yield different pairs of s and m at the end.

For reasons not entirely clear to us, Leivant does not proceed like this immediately. Instead of
r he chooses a much higher modulus as follows. Let w be the least common multiple of 2, . . . , v.
Then by 4.1.1(i) and r|w (because r < v) we also have:

f `CS [αs+m(αw)∗]X

Now we repeat the argument w times to obtain the following CS validities where all sx + mx

indexed by x = 1, . . . , w are distinct modulo w.

f `CS [αs1+m1(αw)∗]X

f `CS [αs2+m2(αw)∗]X
...

f `CS [αsw+mw(αw)∗]X

Finally, note that by applying the induction hypothesis (i) to the corresponding Pks we have
f `CS [α]kX for all k ≤ maxx(sx +mx). Together with the above validities this fits nicely into
Lemma 4.1.1(iii) from which we then get f `CS [a∗]X.

2

Theorem [11, 4.3.3]
S is semantically complete.

Proof. Suppose X ∈ PDL. Then by 2.2.47 X is provable in D. Hence by 3.2.2 it Xo is provable
in CD. By 4.3.18 this implies that Xo is provable in CS. Hence by 3.2.1 X is provable in S.

2.11 Linear transformations

To prepare the ∗-case of the interpolation proof, Leivant discusses linear transformations of
matrices and vectors which have PDL-programs and formulas as their entries, respectively.

Already Leivant attributes a central idea in this section to Dexter Kozen and we conjecture
that by now the following Lemmas could also be obtained from more general results about
action algebras and regular expressions. However, we try to reproduce the original proofs from
[11] and refer the interested reader to [9] and [10] by Kozen.

7Leivant’s “2.4.2” seems to by a typo here.
8Ditto for “4.4.1”.
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Notation
We write ~X, ~Y , ~Z for vectors of formulas, for example ~Y = 〈Y1, . . . , Yk〉 and (α), (β) or (γ) for
matrices of programs, e.g.

(β) =

β1,1 · · · β1,k
... . . . ...
βk,1 · · · βk,k


Definition
The linear transformation of a matrix of programs (β) and a vector of formulas ~Y = 〈Y1, . . . , Yk〉
is the right scalar multiplication where the connective ∧ is the additive and the “boxing” map
given by (β, Y ) 7→ [β]Y is the multiplicative operator:

(β)~Y =

β1,1 · · · β1,k
... . . . ...
βk,1 · · · βk,k


Y1...
Yk

 :=

[β1,1]Y1 ∧ · · · ∧ [β1,k]Yk
...

[βk,1]Y1 ∧ · · · ∧ [βk,k]Yk


Definition
The product of two matrices of programs is the product of the two linear transformations where
the program connectives ; and ∪ are the multiplicative and additive operator respectively:

(β)(γ) =

β1,1 · · · β1,k
... . . . ...
βk,1 · · · βk,k


γ1,1 · · · γ1,k

... . . . ...
γk,1 · · · γk,k



:=

β1,1; γ1,1 ∪ · · · ∪ β1,k; γk,1 · · · β1,1; γ1,k ∪ · · · ∪ β1,k; γk,k
... . . . ...

βk,1; γ1,1 ∪ · · · ∪ βk,k; γk,1 · · · βk,1; γ1,k ∪ · · · ∪ βk,k; γk,k


Definition
Two vectors of formulas with k entries are equivalent, written ~X ≡ ~Y , iff we have for all i ≤ k
that Xk ↔ Yk ∈ PDL. Any two k × k matrices (α) and (β) are equivalent, written (α) ≡ (β),
iff for all vectors ~Y with k entries we have that (α)~Y ≡ (β)~Y .

Fact
If β and γ are matrices of programs and ~Y is vector of formulas, then (β)((γ)~Y ) ≡ ((β)(γ))~Y .
This follows directly from the fact that boxes distribute over conjunctions and that conjunctions
correspond to the ∪ composition of programs as it can be see in the next example.

Example(
a b
c d

)((
e f
g h

)(
p
q

))
=

(
a b
c d

)((
[e]p ∧ [f ]q
[g]p ∧ [h]q

))

=

(
[a]([e]p ∧ [f ]q) ∧ [b]([g]p ∧ [h]q)
[c]([e]p ∧ [f ]q) ∧ [d]([g]p ∧ [h]q)

)
≡

(
[(a; e) ∪ (b; g)]p ∧ [(a; f) ∪ (b;h)]q
[(c; e) ∪ (d; g)]p ∧ [(b; g) ∪ (d;h)]q

)

=

(
(a; e) ∪ (b; g) (a; f) ∪ (b;h)
(c; e) ∪ (d; g) (c; f) ∪ (d;h)

)(
p
q

)
=

((
a b
c d

)(
e f
g h

))(
p
q

)
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Definition
The identity matrix I is given by:

I :=


1 0 · · · 0 0
0 1 0
... . . . ...
0 1 0
0 0 . . . 0 1


Lemma [11, 5.2.1]
For every k× k matrix (β) of programs, there exists a matrix (γ) such that I + (β)(γ) ≡ (γ).

Proof.

The proof is constructive. To keep the notation simple but still point out the main ideas we
only consider the case k = 2 here. For a fully general but less detailed proof we refer to the
original in [11, p. 370f].

Given a matrix β =

(
a b
c d

)
we have to find a matrix γ =

(
e f
g h

)
such that I + (β)(γ) ≡ (γ)

which means we need programs e, f, g, h such that:(
1 ∪ (a; e) ∪ (b; g) (a; f) ∪ (b;h)

(c; e) ∪ (d; g) 1 ∪ (c; f) ∪ (d;h)

)
≡
(
e f
g h

)

The first idea for the proof is to demand that the non-diagonal entries of γ are ;-multiples of
the diagonal entries in the same column. In our simplified case this means there are λ1 and λ2
such that that f = λ1;h and g = λ2; e. This allows us to rephrase and find solutions for the
equivalences in the entries (1, 2) and (2, 1). The second idea for the proof is then to observe
that the semantics of ∗ allow us to solve coinductive equations of programs.

From (a; f)∪ (b;h) = f we get (a;λ1;h)∪ (b;h) = λ1;h which is ((a;λ1)∪b);h = λ1;h for which
it suffices to have (a;λ1) ∪ (b) = λ1. Note that λ1 := a∗; b solves this. Hence let f := a∗; b;h.

From (c; e)∪ (d; g) = g we get (c; e)∪ (d;λ2; e) = λ2; e which is (c∪ (d;λ2)); e = λ2; e for which
it suffices to have (c ∪ (d;λ2)) = λ2. Note that λ2 := d∗; c solves this. Hence let g := d∗; c; e.

It remains to find e and h such that 1∪ (a; e)∪ (b; g) = e and 1∪ (c; f)∪ (d;h) = h. But these
now become 1 ∪ (a; e) ∪ (b; (d∗; c); e) = e and 1 ∪ (c; a∗; b;h) ∪ (d;h) = h which are equivalent
to 1 ∪ (a ∪ (b; (d∗; c))); e = e and 1 ∪ ((c; a∗; b) ∪ d);h = h.

Finally, we observe that e := (a ∪ (b; (d∗; c)))∗ and h := ((c; a∗; b) ∪ d)∗ solve these conditions
and conclude with:

γ :=

(
(a ∪ (b; (d∗; c)))∗ (a∗; b)((c; a∗; b) ∪ d)∗

(d∗; c)(a ∪ (b; (d∗; c)))∗ ((c; a∗; b) ∪ d)∗

)
It is noteworthy that all entries of the resulting matrix depend on all entries of the one we
started with. This generalizes to the k× k case and should be kept in mind for applications of
the Lemma.

2
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Lemma [11, 5.2.2]
If for all n we have (β)n 6= (β)n+1, then (γ) in the previous Lemma is unique.

In fact, this Lemma can be strengthened to say that for any (β) we can find a unique (γ) such
that (β)∗ ≡ (γ). In the case of (β)n = (β)n+1 we simply let (γ) := (β)n, otherwise we take the
(γ) from Lemma [11, 5.2.2].

But why are we interested in these fixpoint matrices? The key observation from the two
previous Lemmas is that the fixpoint of a matrix of programs can itself be taken to be a matrix
of programs. Hence we obtain an expressibility result, captured by the following definition and
theorem.

Definition
For a fixed vector ~Y = 〈Y1, . . . , Yk〉 and a matrix (β) and any n < ω, let Y (n) := (β)n~Y . We
write Y (n)

i for the i-th entry of Y (n).9

Applying Leivant’s Lemmas 5.2.1 and 5.2.2 in such a situation shows that the infinite iteration of
a linear transformation of programs can be expressed in PDL. We show that the PDL language
can always express an infinite conjunction of the shape

∧
n<ω Y

(n)
i .

Fixpoint Expressibility Theorem (implicit in [11, p. 370])
For any k-tuple of formulas Y1, . . . , Yk, any k × k matrix of programs (β) and any i ≤ k there
is a PDL-formula equivalent to the infinite conjunction

∧
n<ω

Y
(n)
i .

Proof. By Lemma 5.2.1 there is a (γ) such that I + (β)(γ) = (γ). Then we obtain the following
equalities and equivalences:

(γ) = I + (β)(γ)
= I + (β)(I + (β)(γ))
= I + (β) + (β)(β)(γ)
= I + (β) + (β)(β)(I + (β)(γ))
= I + (β) + (β)(β) + (β)(β)(β)(γ)
= . . . ≡ I + (β) + (β)2 + (β)3 + . . . =: (β)∗

Now note that
∧
n<ω

Y
(n)
i is equivalent to the i-th entry of (β)∗~Y . Let ~Z := (γ)~Y and let Zi

denote its i-th entry. Then
∧
n<ω

Y
(n)
i ≡ Zi and Zi is a PDL-formula.

2

Example

For ~Y = 〈p, q〉 and (β) =

(
a b
c d

)
we have:

Y (1) =

(
[a]p ∧ [b]q
[c]p ∧ [d]q

)
and Y (2) =

(
[a]([a]p ∧ [b]q) ∧ [b]([c]p ∧ [d]q)
[c]([a]p ∧ [b]q) ∧ [d]([c]q ∧ [d]q)

)
etc.

9The notation Y (n)
i conceals that this formula is of course very dependent on the given β. Also note that we

define Y (n)
i directly via matrices. Because matrix and vector multiplication are compatible as summarized

in the fact on page 21, the result is still the same as Leivant’s iterated definition of Y ′i .
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∧
n<ω

Y
(n)
1 = p ∧ [a]p ∧ ([a]p ∧ [b]q) ∧ ([a]([a]p ∧ [b]q) ∧ [b]([c]p ∧ [d]q)) ∧ . . .

∧
n<ω

Y
(n)
2 = p ∧ [a]q ∧ ([c]p ∧ [d]q) ∧ ([c]([a]p ∧ [b]q) ∧ [d]([c]p ∧ [d]q)) ∧ . . .

Looking back at the end of the proof of 5.2.1 we can directly see that and how these infinite
formulas can be expressed in PDL. As our matrix (β) is the same as in the proof, we can use
the γ from there too. We get:∧

n<ω

Y
(n)
1 ≡ [(a ∪ (b; (d∗; c)))∗]p ∧ [(a∗; b)((c; a∗; b) ∪ d)∗]q

∧
n<ω

Y
(n)
1 ≡ [(d∗; c)(a ∪ (b; (d∗; c)))∗]p ∧ [((c; a∗; b) ∪ d)∗]q

2.12 Extending Maehara’s method for PDL

To prove interpolation for the obtained sequent calculus Leivant uses a well-known syntactical
method originally by Maehara which is explained in [14, p. 33-35]. To employ this method, one
first has to define the concept of an interpolant for a sequent with partitioned premises.

Definition
A partition of a set f of formulas is a pair g1, g2 such that g1∪g2 = f and g1∩g2 = ∅. We write
this as g1; g2. For notational simplicity we leave out the brackets of singletons in partitions.
For example X, f ; g, Y denotes the partition of {X, Y } ∪ f ∪ g into f ∪ {X} and {Y } ∪ g.

Definition (from [11, Section 5.1])
Given a sequent f ` X and a partition of f into f−; f+, we say that K is an interpolant for
f−; f+ ` X iff

L(K) ⊆ L(f−) ∩ L(f+, X) and f− ` K and f+, K ` X

For the connection between these interpolants for partitions and interpolants as they occur in
the definition of Craig Interpolation, see Theorem [11, 5.3.2 (i)] at the end of this section.

Lemma [11, 5.3.1]
Let f−; f+ be any partition of a set of formulas f . Let X be any formula and q an atomic
proposition not occurring in f .

(i) Suppose P is a proof in CD of f ` X. Then there is an interpolant K for f−; f+ ` K.

(ii) Suppose P is a proof of f ` [α]q from {fi ` q}i<k where q does not occur in f . Let f−i ; f+
i

be the partitions of fi (i < k) induced10 by f−; f+. If Ki is an interpolant for f−i ; f+
i ` X

(i < k), then there is an interpolant K of the form
∧
i

[βi]Ki for f−; f+ ` [α]X.

Proof. By tree-induction on P , simultaneously for (i) and (ii).

Base case

10We give a definition of induced in the induction step.
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If P is of length 1, then it consists of a single sequent f ` X which is initial, i.e. we have
f ∩ {X} 6= ∅ and thus X ∈ f . Now, given a partition of f into f−; f+ we have X ∈ f− or
X ∈ f+. In the first case, let K := X. In the second case, let K := >. In both cases it is easy
to check that K is an interpolant for f−; f+ ` X. This shows (i).

There is no base case for (ii) because P in (ii) is always of a length greater than 1.

Induction Hypothesis

Suppose that for all partitions we have that (i) and (ii) hold for all proofs shorter than P .

Induction Step

We consider different cases for each rule which is applied at the end of P . Note that for some
rules we also have to distinguish different possible partitions because active formulas left of `
can be demanded to be in the left or right part of the partition.

In every case the strategy is as follows. Given a partition of the last sequent we choose partitions
of the premises. Then by the induction hypothesis we obtain interpolants for the partitioned
premises. We have to find those partitions of the premises which yield interpolants out of which
we can build an interpolant of the last sequent. We call these partitions induced by the given
partition and these are what part (ii) talks about.

→L Suppose the last step of P is

f ` X f, Y ` Z (→L)
f,X → Y ` Z

Now, given an arbitrary partition f−; f+ of f we have to consider the two possible ways
to extend this to a partition of f,X → Y .

• f−, X → Y ; f+

By induction hypothesis we get interpolants for the following two sequents.

For f+; f− ` X (note the changed partition!) we have a formula K1 such that

L(K1) ⊆ L(f+) ∩ L(f−, X) and f+ ` K1 and f−, K1 ` X

For f−, Y ; f+ ` Z we have a formula K2 such that

L(K2) ⊆ L(f−, Y ) ∩ L(f+, Z) and f−, Y ` K2 and f+, K2 ` Z

Now we can show that K1 → K2 is an interpolant for f−, X → Y ; f+ ` Z.

L(K1 → K2) = L(K1) ∪ L(K2)
⊆ (L(f+) ∩ L(f−, X)) ∪ (L(f−, Y ) ∩ L(f+, Z))
⊆ (L(f+, Z) ∩ L(f−, X)) ∪ (L(f−, Y ) ∩ L(f+, Z))
= (L(f−, X) ∩ L(f+, Z)) ∪ (L(f−, Y ) ∩ L(f+, Z))
= (L(f−, X) ∪ L(f−, Y )) ∩ L(f+, Z)
= L(f−, X → Y ) ∩ L(f+, Z)

f−, K1 ` X f−, Y ` K2 (→ L)
f−, X → Y,K1 ` K2 (→ R)

f−, X → Y ` (K1 → K2)
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f+ ` K1 f+, K2 ` Z (→ L)
f+, K1 → K2 ` Z

• f−;X → Y, f+

By induction hypothesis we get interpolants for the following two sequents.

For f−; f+ ` X we have a formula K1 such that

L(K1) ⊆ L(f−) ∩ L(f+, X) and f− ` K1 and f+, K1 ` X

For f−;Y, f+ ` Z we have a formula K2 such that

L(K2) ⊆ L(f−) ∩ L(Y, f+, Z) and f− ` K2 and f+, Y,K2 ` Z

Now we can show thatK1∧K2 is an interpolant for f−;X → Y, f+ ` Z. (In Leivant’s
system which does not contain ∧ we would equivalently choose ¬(K1 → ¬K2).)

L(K1 ∧K2) = L(K1) ∪ L(K2)
⊆ (L(f−) ∩ L(f+, X)) ∪ (L(f−) ∩ L(Y, f+, Z))
⊆ (L(f−) ∩ L(f+, X, Y, Z)) ∪ (L(f−) ∩ L(Y, f+, X, Z))
= L(f−) ∩ L(f+, X, Y, Z)
= L(f−) ∩ L(X → Y, f+, Z)

f− ` K1 f− ` K2 (∧R)
f− ` K1 ∧K2

f+, K1 ` X (WEAK)
f+, K1, K2 ` X (∧L)
f+, K1 ∧K2 ` X

f+, Y,K2 ` Z (WEAK)
f+, Y,K1, K2 ` Z (∧L)
f+, Y,K1 ∧K2 ` Z (→ L)

f+, X → Y,K1 ∧K2 ` Z

∗R This is the main challenge of showing CI for PDL. Suppose the last step of P is (∗R).
Then there is some M and for all h ∈ {0, . . . ,M} there is a proof Ph which is part of P :

P0

f ` X

P1

f ` [α]X · · ·
PM

f ` [α]MX
(∗R)

f ` [α∗]X

The good news are that all the active formulas in ∗R are right of `. Hence, given a
partition f−, f+ of f it comes natural to use it without further manipulation. Our goal
is to find a formula K such that

L(K) ⊆ L(f−) ∩ L(f+, [α∗]X) and f− ` K and f+, K ` [α∗]X

For each h = 1, . . . ,M let Ph be the proof of f ` [α]hX occurring in P above this premise.

As in the proof of 4.3.1, by Lemmas 4.2.1, 4.2.2 and the Step by Step Conjecture we can
now find a large enough h such that for some m, s and r such that h = m+ r+ s we can
split Ph into the following parts:11

11The substitutions given in [11, p. 372] seem to be wrong. For example the part Rj starts with [α]mX and
does not take this formula apart, not [α]rX. Hence the former has to be substituted for q, not the latter.
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Qi

{f−i ; f+
i ` [α]mX}i∈I

R′j[[α]mX/q]

{f−j ; f+
j ` [α]m+rX}j∈I

U ′[[α]m+rX/q]

f−i ; f+
i ` [α]m+r+sX

By applying the induction hypothesis (i) to the second line we get a vector ~K such that
every Ki is an interpolant for f−i ; f+

i ` [α]mX.

Furthermore, by using the induction hypothesis (ii) r times, whenever we have a vector
~M such that each Mi is an interpolant for f−i ; f+

i ` Y then there is a matrix (β) such
that (β)M is a vector such that each ((β)M)i is an interpolant for f−i ; f+

i ` [α]rY .

Now, for all n, by applying the latter to the former n times we get:

f−i ` ((β)nK)i and f+
i , ((β)nK)i ` [α]m[α]r×nX

Now we consider two cases how we can reach a fixpoint of (β).

• Suppose for some n we have (β)n ≡ (β)n+1. Then we have (β)n ≡ (β)n+k for all k.
Let (γ) := I + (β) + (β)2 + · · ·+ (β)n.

• Alternatively, we have for all n that (β)n 6= (β)n+1. Then we can apply 5.2.2 to
obtain a unique (γ) such that (γ) ≡ (β)∗.

In both cases, γ is such that ((γ)K)i is an interpolant for f−i ; f+
i ` [α]m[(αr)∗]X:

f−i ` ((γ)K)i and f+
i , ((γ)K)i ` [α]m[(αr)∗]X

Now note that U ′ is a CD-proof of f−; f+ ` [α]sq from {f−j ; f+
j ` q}j∈I . Hence by induc-

tion hypothesis (ii) and the ((γ)K)is we get an interpolantH1 for f−; f+ ` [α]m+s[(αr)∗]X.

(Now Leivant introduces w which “is a sufficiently large number depending only on
f−; f+”[11, p. 327]. It is not clear to us where this w comes from or why we can choose
it arbitrarily large, hence we try to rephrase and be a bit more explicit in the last steps.)

We note that r could have been chosen as any larger number from the beginning, where
the minimum only depended on f−; f+. Furthermore, the same holds for m and s. Hence
we can now fix some r and then repeat the proof for r many sumsm+s which are pairwise
different modulo r. We write these sums as m1 + s1, . . . ,mr + sr. Now for every k ≤ r we
have an interpolant Hk for f−i ; f+

i ` [α]mr+sr [(αr)∗]. Letting K :=
∧
i∈I Hi, we can then

use 4.1.1 to show that K is an interpolant for f−; f+ ` [α∗]X.

2

It remains to show that Lemma 5.3.1 implies our original definition of Craig Interpolation for
CD and thus for PDL.

Theorem [11, 5.3.2 (i)]
PDL has Craig Interpolation.

Proof.
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Suppose X → Y is a theorem of PDL.

By Theorem [11, 2.4.2] (see section 2.4) D is complete for PDL, hence we have `D X → Y .

By 3.2.2 we have `CD Xo → Y o and thus Xo `CD Y o.12 Now consider the partition X0;∅.

Then by 5.3.1 applied to Xo;∅ ` Y o there is a formula Z for which we have

• L(Z) ⊆ L(Xo) ∩ L(∅, Y o),

• Xo → Z ∈ PDL and Z → Y o ∈ PDL

Furthermore we have that in PDL (and thus in D and in S) both Xo ≡ X and Y o ≡ Y .
Also note that L(Xo) = L(X) and L(Y o) = L(Y ) because the formulas only differ in negation
symbols. Hence we can see that Z is in fact a Craig interpolant for X → Y because we have:

• L(Z) ⊆ L(X) ∩ L(Y ),

• X → Z ∈ PDL and Z → Y ∈ PDL

2

3 PDL and PDLn

In the passage we mentioned at the beginning of section 2, Marcus Kracht describes a mistake
in Leivant’s proof. One could read it as accusing the step in which Leivant replaces the ω-rule
in D with a finitary one. But as we have seen in section 2.5, the finitary rule is both admissible
and strong enough to replace the original. Kracht continues his description of Leivant’s mistake
as follows.

“However, this is tantamount to the following. Abbreviate by PDLn the strengthen-
ing of PDL by axioms of the form [a∗]p↔ [a≤n]p for all a. Then, by the finite model
property of PDL, PDL is the intersection of the logics PDLn . Unfortunately, it
is not so that interpolation is preserved under intersection. A counterexample is
the logic G.3 which fails to have interpolation while all proper extensions have
interpolation[.]”[8, p. 493]

This remark is not a proof of PDL not having interpolation, because we can easily show that
intersection does not always break interpolation. In this section we will discuss the ideas from
this quote in detail, in order to explore the relation between PDL and PDLn

12Leivant writes “Then Xo → Y o is a theorem of D, by 3.2.2”. This seems to be a typo.
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3.1 PDL is the intersection of all PDLns

Definition

• For any set of formulas A we define its semantic closure SCL(A) := {φ | A � φ}.

• For any φ ∈ PDL, α ∈ PROG and n ∈ ω we define two abbreviations:

– 〈α≤n〉φ := φ ∨ 〈α〉φ ∨ 〈α;α〉φ ∨ · · · ∨ 〈αn〉φ

– [α≤n]φ := φ ∧ [α]φ ∧ [α;α]φ ∧ · · · ∧ [αn]φ

• Remember that P is our set of propositional letters. For any n ∈ ω, let

PDLn := SCL
(
PDL ∪ {[α∗]p↔ [α≤n]p | α ∈ PROG ∧ p ∈ P}

)
Intersection Theorem

PDL =
⋂
n

PDLn

Proof.

⊆: By definition of PDLn.

⊇: By contraposition. Take any formula φ 6∈ PDL. Then there is a modelM = (W,R, V )
and a state s ∈ W such that M, s 2 φ. In particular, by the finite model property, we
can assume W to be finite. Let k = |W | and note that for all p ∈ P and α ∈ PROG ,
[α∗]p ↔ [α≤k]p is globally true in M. Therefore M is also a PDLk model. Hence
φ 6∈ PDLk and thereby φ 6∈

⋂
nPDLn.

2

Chain Theorem
For any k, n ∈ ω such that k < m we have PDLk ⊇ PDLm.
In fact we have:

PDL0 ⊇ PDL1 ⊇ PDL2 ⊇ · · · ⊇ PDL

Proof. Note that it suffices to show that for any k, p and a we have [a∗]p↔ [a≤k+1]p ∈ PDLk.

← follows directly from [a∗]p↔ [a≤k]p ∈ PDLk.

→ follows from the ∗-axiom and [a∗]p↔ [a≤k]p ∈ PDLk:13

[a∗]p
(∗)

p ∧ [a][a∗]p
([a∗]p→ [a≤k]p)

p ∧ [a]([a≤k]p)

[a≤k+1]p

2

13NB: This proof-tree is a sketch, not to be taken as a proof in a sequent calculus.
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3.2 Finitary Translations

Definition
For any PDL-formula φ we define its n-translation14 φ[n] where φ 7→ φ[n] is defined by:

p 7→ p
¬φ 7→ ¬(φ[n])

φ ∧ ψ 7→ φ[n] ∧ ψ[n]

φ ∨ ψ 7→ φ[n] ∨ ψ[n]

φ→ ψ 7→ φ[n] → ψ[n]

Z

〈a〉φ 7→ 〈a〉(φ[n])
〈α; β〉φ 7→ (〈α〉〈β〉φ)[n]

〈α ∪ β〉φ 7→ (〈α〉φ)[n] ∨ (〈β〉φ)[n]

〈α∗〉φ 7→ (〈α≤n〉φ)[n]

Remember that [α]φ is just ¬〈α〉¬φ, so the translation for boxed formulas is defined implicitly.

Examples
φ φ[2]

[a∗]q 7→ ¬(¬q ∧ 〈a〉¬q ∧ 〈a; a〉¬q)
〈a ∪ b∗〉p 7→ 〈a〉p ∨ (p ∨ 〈b〉p ∨ 〈b; b〉p)

p→ 〈b∗; a〉q 7→ p→ (〈a〉q ∨ 〈b〉〈a〉q ∨ 〈b; b〉〈a〉q)

We now might wonder if φ ∈ PDL ⇐⇒ ∃n : φ[n] ∈ PDLn holds. The left to right direction
indeed does but we skip the proof as it is implied by a theorem below. On the other hand, the
right to left direction can be refuted as follows. Consider φ = 〈a∗〉p → (¬〈a〉p → p). Then
φ[1] = (p∨ 〈a〉p)→ (¬〈a〉p→ p) and it is easy to show that φ[1] ∈ PDL and thus φ[1] ∈ PDL1.
Therefore the right side holds for this φ. But for the left side note that φ 6∈ PDL because
M := (W = 3, Ra = {(0, 1), (1, 2)}, V (p) = {2}), 0 � ¬φ. Hence the left side does not hold and
this direction does not hold in general. Still we can prove the following similar Lemma which
is the main ingredient for the Correspondence Theorem.

Lemma
For any n ∈ ω and any φ we have (φ↔ φ[n]) ∈ PDLn.

Proof. We fix an arbitrary n and do an induction on C(φ). The base case is trivial as C(φ) =
(0, 1) implies p = φ = φ[n] = p for some p from which it follows that φ ↔ φ[n] = p ↔ p ∈
PDL ⊆ PDLn.

For the induction step, take any formula φ and suppose that for all formulas ψ such that
C(ψ) < C(φ) we have (ψ ↔ ψ[n]) ∈ PDLn. Similarly to the base case, the boolean connectives
and all programs but the star do not generate any differences in truth conditions between φ
and φ[n]. It remains to consider the case φ = 〈α∗〉ψ in which our definition of complexity turns
out to be very helpful. Let (a, b) := C(ψ) and (c, d) := C(α). Then C(φ) = C(〈α∗〉ψ) =
(1, 0) + C(α) + C(ψ) = (1 + a+ c, b+ d). We spell out φ[n]:

φ[n] = (〈α∗〉ψ)[n] = (〈α≤n〉ψ)[n] = ψ[n] ∨ (〈α〉ψ)[n] ∨ · · · ∨ (〈αn〉ψ)[n]

14Note that these are not translations between two different languages. PDL and PDLn are merely two different
logics based on the same language. In particular, not all n-translations are in PDLn, only theorems.
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Here all the disjuncts are of lower complexity15 than φ:

max{C(ψ), . . . , C(〈αn〉ψ)}
max{(a, b), . . . , (a, b) + (c, d+ n)}

= max{(a, b), . . . , (a+ c, b+ d+ n)}
= (a+ c, b+ d+ n)
< (1 + a+ c, b+ d)
= C(φ)

Hence by the induction hypothesis the disjuncts are PDLn-equivalent to their n-translations:

{ψ(n)↔ (ψ)[n], . . . , 〈αn〉ψ ↔ (〈αn〉ψ)[n]} ⊆ PDLn

This allows us to show φ[n] ↔ φ ∈ PDLn, namely (〈α∗〉ψ)[n] ↔ 〈α∗〉ψ ∈ PDLn as follows.

For one direction, suppose (〈α∗〉ψ)[n] is true at some state in some PDLn-model. Then one
of its disjuncts has to hold, i.e. for some k ≤ n we have (〈αk〉ψ)[n] true there. By 〈αk〉ψ ↔
(〈αk〉ψ)[n] ∈ PDLn also 〈αk〉ψ has to hold. By PDL ⊆ PDLn this implies 〈α∗〉ψ. Hence
(〈α∗〉ψ)[n])→ 〈α∗〉ψ ∈ PDLn.

For the other direction, suppose 〈α∗〉ψ is true at some state in some PDLn-model. Then
because 〈α∗〉ψ ↔ 〈α≤n〉ψ ∈ PDLn also 〈α≤n〉ψ has to be true there, and thus for some k ≤ n
we have 〈αk〉ψ. Now by 〈αk〉ψ ↔ (〈αk〉ψ)[n] ∈ PDLn we also have (〈αk〉ψ)[n] true there which
is one of the disjuncts of (〈α∗〉ψ)[n]. Hence 〈α∗〉ψ → (〈α∗〉ψ)[n]) ∈ PDLn.

2

Correspondence Theorem
For all PDL-formulas φ we have φ ∈ PDL iff ∀n : φ[n] ∈ PDLn.

Proof.

⇒ Fix any φ ∈ PDL and n ∈ ω. By PDL ⊆ PDLn we have φ ∈ PDLn. By the Lemma
we have φ↔ φ[n] ∈ PDLn and therefore also φ[n] ∈ PDLn.

⇐ Suppose we have ∀n : φ[n] ∈ PDLn. Fix some n. Then by the previous Lemma we have
(φ ↔ φ[n] ∈)PDLn and therefore also φ ∈ PDLn. Because n was arbitrary we have
∀n : φ ∈ PDLn Then by the Intersection Theorem we have φ ∈ PDL.

2

3.3 Can we preserve CI along the chain?

Now, to show thatPDL has interpolation, we do not need that it is preserved under intersection.
The statement that CI is preserved under the particular infinite descending chain of PDLns
would suffice. But does this hold and could the results from the previous section be of any
help? We finish this chapter with a sketch of what unfortunately seems to be a dead-end.

15While different bracketing of formulas and programs does not change their truth conditions, it can very well
change their complexity, for example we have C((p ∧ q) ∧ (r ∧ s)) = (0, 3) < (0, 4) = C(((p ∧ q) ∧ r) ∧ s). In
such cases we tacitly assume the bracketing which yields the lowest complexity.
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Given any φ→ ψ ∈ PDL, we have for all k that φ→ ψ ∈ PDLk. Each PDLk has CI because
it is a notational variant of multi-modal logic, hence we get for each k a formula γk such that
γk is a PDLk-interpolant for φ→ ψ, i.e.

• φ→ γk ∈ PDLk and γk → ψ ∈ PDLk

• L(γk) ⊆ L(φ) ∩ L(ψ)

Furthermore, by the Chain Theorem we have for any m,n ∈ N that if m < n, then every
PDLn-interpolant is also a PDLm-interpolant. Hence note that we can choose an arbitrarily
high k, for example depending on the size of φ and ψ.

After fixing a k, in order to reach a contradiction suppose that γk is a PDLk-interpolant but not
a PDL-interpolant. Then φ → γk 6∈ PDL or γk → ψ 6∈ PDL. Hence there is a PDL-model
M such thatM � φ ∧ ¬γk orM � γk ∧ ¬ψ. In both cases we know thatM can be taken to
be finite and furthermore by [4, 3.2] the size m := |M| only depends on φ, γk and ψ.

The missing link now seems to be how choosing a k such that a PDLm interpolant for φ→ ψ
helps us to reach a contradiction. Probably, a limit on the size of the interpolants themselves
would be useful here. If we could reach a contradiction, CI for PDL would follow.

4 Concluding Remarks

We finish this report with a different yet still not satisfying view on the question of Craig
Interpolation for PDL. We could show that the criticism by Kracht in [8] does not affect
Leivant’s proof in [11] insofar that the latter does not contain any implicit or explicit switch to
a finitary variant of PDL.

However, we are still not able to reconstruct the whole proof and settle the question. Maeharas
method and the linear transformations seem to be free from problems and by today they also
are not a particularity of this proof any more. The main obstacles are Lemma 4.2.1 and the
Step-by-Step Conjecture. Also the final steps in the completeness and interpolation proofs
(4.3.1 and 5.3.1) deserve further explanation than we could provide so far. Hence we think that
further discussion of the proof should focus on these parts. We hope this report contributes
towards a renewed discussion, possibly leading to an answer to the age-old question.
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