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Representation matters!



1. Dynamic Epistemic Logic
2. Symbolic Model Checking
3. Factual Change



Epistemic Logic

Syntax
ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ

Kripke Models
M = (W ,Ri ,Val) where
I W set of worlds
I Ri ⊆W ×W indistinguishability relation
I Val : W → P(P) valuation function

Semantics
M,w |= Kiϕ iff wRiv impliesM, v |= ϕ



Dynamic Epistemic Logic: Action Models

Action Models

A = (A,R, pre, post) where
I A set of atomic events
I Ri ⊆ A× A indistinguishability relation
I pre : A→ L precondition function
I post : A→ P → L postcondition function

Product Update

M×A := (W new,Rnew
i ,Valnew) where

I W new := {(w , a) ∈W × A | M,w � pre(a)}
I Rnew

i := {((w , a), (v , b)) | Riwv and Riab}
I Valnew((w , a)) := {p ∈ V | M,w � posta(p)}

(Baltag, Moss, and Solecki 1998,Benthem, Eijck, and Kooi (2006))



DEL Example: Coin Flip hidden from a

w
pa,b ×

a1
?>

p := ⊥

a2
?>

p := >

a,b

a,b

a =

(w , a1)
¬p

(w , a2)
p

a,b

a,b

a
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3. Factual Change



Model Checking – The Task

Given a model and a formula, does it hold in the model?

M,w |= ϕ or M,w 6|= ϕ

???



Limits of Explicit Model Checking

Set of possible worlds has to fit in memory.
For large models (~ 1000 worlds) this gets slow.
Runtime in seconds for n Muddy Children:

n DEMO-S5

6 0.012
8 0.273
10 8.424
11 46.530
12 228.055



1. Dynamic Epistemic Logic
2. Symbolic Model Checking
3. Factual Change



Symbolic Model Checking

 
2×

3×

I Can we represent models in a more compact way?
. . . such that we can still interpret all formulas?

Yes!

1. RepresentM = (W ,Ri ,Val) symbolically: F = (V , θ,Oi ).
2. Translate DEL to equivalent boolean formulas.
3. Use Binary Decision Diagrams to speed it up.
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Knowledge Structures

Knowledge Structures

F = (V , θ,O1, · · · ,On) where

I V Vocabulary set of propositional variables
I θ State Law boolean formula over V
I Oi ⊆ V Observables propositions observable by i

The set of states is {s ⊆ V | s � θ}. Call (F , s) a scenario.

Symbolic Semantics

F , s � Kϕ iff s ∩ Oi = s ′ ∩ Oi implies F , s ′ � ϕ
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From Knowledge Structures to Kripke Models

Theorem
For every knowledge structure there is an
equivalent S5 Kripke Model and vice versa.

2×

3×
≡

Example
The knowledge structure

F = (V = {p, q}, θ = p ∨ q,OAlice = {p},OBob = {q})

is equivalent to this Kripke model:

p

p, qq

Alice

Bob



From Kripke Models to Knowledge Structures

(This is the tricky direction.)

Example

2

1
p

0
p

Alice

Alice

Alice

Bob

is equivalent to this knowledge structure:

( V = {p, p2}, θ = p2 → p, OAlice = ∅, OBob = {p2} )

with actual state: {p, p2}



Everything is boolean!

Definition

Fix a knowledge structure F = (V , θ,O1, · · · ,On).
We define a local boolean translation ‖ · ‖F :

I ‖p‖F := p
I ‖¬ϕ‖F := ¬‖ϕ‖F
I ‖ϕ1 ∧ ϕ2‖F := ‖ϕ1‖F ∧ ‖ϕ2‖F
I ‖Kiϕ‖F := ∀(V \ Oi )(θ → ‖ϕ‖F )
I ‖[!ϕ]ψ‖F := ‖ϕ‖F → ‖ψ‖Fϕ

Theorem

For all scenarios (F , s) and all formulas ϕ:
F , s � ϕ ⇐⇒ s � ‖ϕ‖F
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Example: Symbolic Muddy Children I

F0 =

V = {p1, p2, p3}, θ0 = >,
O1 = {p2, p3}
O2 = {p1, p3}
O3 = {p1, p2}


“At least one of you is muddy.”

F1 =

V = {p1, p2, p3}, θ1 = (p1 ∨ p2 ∨ p3),
O1 = {p2, p3}
O2 = {p1, p3}
O3 = {p1, p2}


“Do you know if you are muddy?” . . . Nobody reacts.

This announcement is equivalent to:

‖
∧
i∈I

(¬(Kipi ∨ Ki¬pi ))‖F1 = (p2 ∨ p3) ∧ (p1 ∨ p3) ∧ (p1 ∨ p2)
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Magic from 1986: Binary Decision Diagrams
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(Read the classic Bryant 1986 for more details.)



BDD Magic I

How long do you need to compare these two formulas?

p3 ∨ ¬(p1 → p2) ≡ ¬(p1 ∧ ¬p2)→ p3

Here are is their BDDs:
1

2

3

10
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BDD Magic II

This was not an accident, BDDs are canonical.

Theorem:

ϕ ≡ ψ ⇐⇒ BDD(ϕ) = BDD(ψ)

Equivalence checks are free and we have fast algorithms to compute
BDD(¬ϕ), BDD(ϕ ∧ ψ), BDD(ϕ→ ψ) etc.



Results

Why translate DEL to boolean formulas?

Because computers are incredibly good at dealing with them!

n DEMO-S5 SMCDEL

6 0.012 0.002
8 0.273 0.004
10 8.424 0.008
11 46.530 0.011
12 228.055 0.015
13 1215.474 0.019
20 0.078
40 0.777
60 2.563



So far, so good . . .

This was S5 PAL, what about:

1. Non-S5 relations for belief?

2. Action Models with factual change?



Motivating Example: Sally-Anne

To model this we need non-S5 action models with factual change!
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Extension to non-S5

I Oi ⊆ P always defines equivalence relations!
I How can we describe other relations?

I Copy P to describe reachability (Gorogiannis and Ryan 2002)
I Fresh variables V ′ := {p′ | p ∈ V } and formulas L(V ∪ V ′)
I Actually: use BDD of boolean formula describing the relation
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Extension to non-S5: From relations to BDDs

p1

p2

p1, p2

Relation R

(¬p1 ∧ ¬p2 ∧ ¬p′1 ∧ ¬p′2)
∨ (¬p1 ∧ ¬p2 ∧ ¬p′1 ∧ p′2)
∨ (¬p1 ∧ ¬p2 ∧ p′1 ∧ ¬p′2)
∨ (¬p1 ∧ ¬p2 ∧ p′1 ∧ p′2)
∨ (¬p1 ∧ p2 ∧ ¬p′1 ∧ p′2)
∨ (p1 ∧ ¬p2 ∧ p′1 ∧ p′2)
∨ (p1 ∧ ¬p2 ∧ p′1 ∧ ¬p′2)
∨ (p1 ∧ p2 ∧ p′1 ∧ p′2)

Formula Φ(R).

p1

p′1

p2

p′2

> ⊥
BDD of Φ(R)



Extension to non-S5: Belief Structures

F = (V , θ,Ω1, · · · ,Ωn) where

I V Vocabulary propositional variables
I θ State Law boolean formula over V
I Ωi ∈ L(V ∪ V ′) Observables encoded relation for i

The equivalent Kripke model is given by:

Rixy :⇐⇒ (x ∪ y ′) � Ωi

New translation for modalities:

‖�iψ‖F := ∀V ′(θ′ → (Ωi → (‖ϕ‖F )′))



The return of the postcondition

1. Dynamic Epistemic Logic
2. Symbolic Model Checking
3. Factual Change



Transformers
Definition

A transformer for V is a tuple X = (V+, θ+,V−, θ−,Ω+) where

I V+ is a set of fresh atomic propositions s.t. V ∩ V+ = ∅
I θ+ is a possibly epistemic formula from L(V ∪ V+)
I V− ⊆ V is the modified subset of the original vocabulary
I θ− : V− → LB(V ∪ V+) encodes postconditions
I Ω+

i ∈ LB(V+ ∪ V+′) describe observations for each i

to transform F = (V , θ,Ωi ), let F ×X := (V new, θnew,Ωnew
i ) where

1. V new := V ∪ V+ ∪ V ◦−
2. θnew :=[

V−/V ◦−
]

(θ ∧ ‖θ+‖F ) ∧
∧

q∈V −
(
q ↔

[
V−/V ◦−

]
(θ−(q))

)
3. Ωnew

i :=
([
V−/V ◦−

] [
(V−)′/(V ◦−)′

]
Ωi
)
∧ Ω+

i



Simple Example: Coin Flip hidden from a

w
pa,b ×

a1
?>

p := ⊥

a2
?>

p := >

a,b

a,b

a =

(w , a1)
¬p

(w , a2)
p

a,b

a,b

a

(V = {p}, θ = p, Ωa = >, Ωb = >)
× (V+ = {q} θ+ = >, Ω+

a = >, Ω+
b = q ↔ q′)

V− = {p}, θ−(p) := q,
= (V = {p, q, p◦} θ = p◦ ∧ (p ↔ q), Ωa = > Ωb = q ↔ q′)



Monster Example: Symbolic Sally-Anne I

I Sally is in the room: p, Marble is in the box: t
I Question after the actions: Does Sally believe that the marble

is in the box: �st?

Initial structure: (({p, t}, (p ∧ ¬t),>,>), p)

X1: Sally puts the marble in the basket:
((∅,>, {t}, θ−(t) = >,>,>),∅).

X2: Sally leaves: ((∅,>, {p}, θ−(p) = ⊥,>,>),∅).
X3: Anne puts the marble in the box, not observed by Sally:

(({q},>, {t}, θ−(t) = (¬q → t)∧ (q → ⊥),¬q′, q ↔ q′), {q}).
X4: Sally comes back: ((∅,>, {p}, θ−(p) = >,>,>),∅).
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The slide we will skip

(({p, t}, (p ∧ ¬t),>,>), p) F0
× ((∅,>, {t}, θ−(t) = >,>,>),∅) X1
= (({p, t, t◦}, (p ∧ ¬t◦) ∧ t,>,>), {p, t})

× ((∅,>, {p}, θ−(p) = ⊥,>,>),∅) X2
= (({p, t, t◦, p◦}, (p◦ ∧ ¬t◦) ∧ t ∧ ¬p,>,>), {t, p◦})
≡V (({p, t}, t ∧ ¬p,>,>), {t})

× (({q},>, {t}, θ−(t) = (¬q → t) ∧ (q → ⊥),¬q′, q ↔ q′), {q}) X3
= (({p, t, q, t◦}, t◦ ∧ ¬p ∧ (t ↔ ((¬q → t◦) ∧ (q → ⊥))),¬q′, q ↔ q′), {q})
= (({p, t, q, t◦}, t◦ ∧ ¬p ∧ (t ↔ ¬q),¬q′, q ↔ q′), {q})
≡V (({p, t, q},¬p ∧ (t ↔ ¬q),¬q′, q ↔ q′), {q})

× ((∅,>, {p}, θ−(p) = >,>,>),∅) X4
= (({p, t, q, p◦},¬p◦ ∧ (t ↔ ¬q) ∧ p,¬q′, q ↔ q′), {p, q})
≡V (({p, t, q}, (t ↔ ¬q) ∧ p,¬q′, q ↔ q′), {p, q})



Everything on the previous scary slide are boolean operations, so we
blindly trust a computer to deal with it.



Monster Example: Symbolic Sally-Anne IIII
In the last scene Sally believes the marble is in the basket:

{p, q} � �St
⇐⇒ {p, q} � ∀V ′(θ′ → (ΩS → t ′))
⇐⇒ {p, q} � ∀{p′, t ′, q′}((t ′ ↔ ¬q′) ∧ p′ → (¬q′ → t ′))
⇐⇒ {p, q} � >

(François Schwarzentruber: Hintikka’s world)

http://people.irisa.fr/Francois.Schwarzentruber/hintikkasworld/


Summary

I representation matters!
I symbolic model checking DEL gives a big speed-up
I knowledge/belief structures encode Kripke models
I transformers provide a modular approach for ontic and

epistemic actions

Future Work
I Comparison with (Charrier and Schwarzentruber 2017)
I Find big examples and benchmark!
I Limit postconditions to > and ⊥?

github.com/jrclogic/SMCDEL malvin@w4eg.eu

https://github.com/jrclogic/SMCDEL
mailto:malvin@w4eg.eu


Bonus Slide: Comparison with Mental Programs /
Succinct DEL

Similar approach in (Charrier and Schwarzentruber 2017). Mental
programs describe which change is allowed: q 7→ >, p 7→ q, . . .

I Observational BDDs and mental programs are dual in memory
consumption:

Relation BDD Mental Program

Identity 2 · |V | 1
Total 1 2 · |V |
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