Towards Symbolic Factual Change in Dynamic Epistemic Logic

Malvin Gattinger
ILLC, Amsterdam

July 18th 2017
ESSLLI Student Session
Toulouse

Are there more red or more blue points?

Are there more red or more blue points?

Are there more red or more blue points?

Representation matters!

1. Dynamic Epistemic Logic

2. Symbolic Model Checking
3. Factual Change

Epistemic Logic

Syntax

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi \mid K_{i} \varphi
$$

Kripke Models

$\mathcal{M}=\left(W, R_{i}\right.$, Val $)$ where

- W set of worlds
- $R_{i} \subseteq W \times W \quad$ indistinguishability relation
- Val : $W \rightarrow \mathcal{P}(P)$ valuation function

Semantics

$\mathcal{M}, w \models K_{i} \varphi$ iff $w R_{i} v$ implies $\mathcal{M}, v \models \varphi$

Dynamic Epistemic Logic: Action Models

Action Models

$\mathcal{A}=(A, R$, pre, post $)$ where

- A
- $R_{i} \subseteq A \times A$
- pre : $A \rightarrow \mathcal{L}$
- post : $A \rightarrow P \rightarrow \mathcal{L}$
set of atomic events indistinguishability relation precondition function
postcondition function

Product Update

$\mathcal{M} \times \mathcal{A}:=\left(W^{\text {new }}, \mathcal{R}_{i}^{\text {new }}, V\right.$ Val $\left.{ }^{\text {new }}\right)$ where

- $W^{\text {new }}:=\{(w, a) \in W \times A \mid \mathcal{M}, w \vDash \operatorname{pre}(a)\}$
- $\mathcal{R}_{i}^{\text {new }}:=\left\{((w, a),(v, b)) \mid \mathcal{R}_{i} w v\right.$ and $\left.R_{i} a b\right\}$
- $\operatorname{Val}^{\text {new }}((w, a)):=\left\{p \in V \mid \mathcal{M}, w \vDash \operatorname{post}_{a}(p)\right\}$
(Baltag, Moss, and Solecki 1998,Benthem, Eijck, and Kooi (2006))

DEL Example: Coin Flip hidden from a

1. Dynamic Epistemic Logic
2. Symbolic Model Checking
3. Factual Change

Model Checking - The Task

Given a model and a formula, does it hold in the model?

$$
\mathcal{M}, w \models \varphi \quad \text { or } \mathcal{M}, w \not \models \varphi
$$

???

Limits of Explicit Model Checking

Set of possible worlds has to fit in memory. For large models (~ 1000 worlds) this gets slow. Runtime in seconds for n Muddy Children:

n	DEMO-S5
6	0.012
8	0.273
10	8.424
11	46.530
12	228.055

1. Dynamic Epistemic Logic
2. Symbolic Model Checking
3. Factual Change

Symbolic Model Checking

- Can we represent models in a more compact way? ... such that we can still interpret all formulas?

Symbolic Model Checking

- Can we represent models in a more compact way?
... such that we can still interpret all formulas?
Yes!

1. Represent $\mathcal{M}=\left(W, R_{i}\right.$, Val $)$ symbolically: $\mathcal{F}=\left(V, \theta, O_{i}\right)$.
2. Translate DEL to equivalent boolean formulas.
3. Use Binary Decision Diagrams to speed it up.

Knowledge Structures

Knowledge Structures

$\mathcal{F}=\left(V, \theta, O_{1}, \cdots, O_{n}\right)$ where

- Vocabulary set of propositional variables
- θ State Law boolean formula over V
- $O_{i} \subseteq V \quad$ Observables propositions observable by i

The set of states is $\{s \subseteq V \mid s \vDash \theta\}$. Call (\mathcal{F}, s) a scenario.

Knowledge Structures

Knowledge Structures

$\mathcal{F}=\left(V, \theta, O_{1}, \cdots, O_{n}\right)$ where

- Vocabulary set of propositional variables
- θ State Law boolean formula over V
- $O_{i} \subseteq V \quad$ Observables propositions observable by i

The set of states is $\{s \subseteq V \mid s \vDash \theta\}$. Call (\mathcal{F}, s) a scenario.

Symbolic Semantics

$\mathcal{F}, s \vDash K \varphi$ iff $s \cap O_{i}=s^{\prime} \cap O_{i}$ implies $\mathcal{F}, s^{\prime} \vDash \varphi$

From Knowledge Structures to Kripke Models

Theorem

For every knowledge structure there is an equivalent S5 Kripke Model and vice versa.

Example

The knowledge structure

$$
\mathcal{F}=\left(V=\{p, q\}, \theta=p \vee q, O_{\text {Alice }}=\{p\}, O_{\text {Bob }}=\{q\}\right)
$$

is equivalent to this Kripke model:

From Kripke Models to Knowledge Structures

(This is the tricky direction.)

Example

is equivalent to this knowledge structure:

$$
\left(V=\left\{p, p_{2}\right\}, \theta=p_{2} \rightarrow p, O_{\text {Alice }}=\varnothing, O_{\text {Bob }}=\left\{p_{2}\right\}\right)
$$

with actual state: $\left\{p, p_{2}\right\}$

Everything is boolean!

Definition

Fix a knowledge structure $\mathcal{F}=\left(V, \theta, O_{1}, \cdots, O_{n}\right)$.
We define a local boolean translation $\|\cdot\|_{\mathcal{F}}$:

- $\|p\|_{\mathcal{F}} \quad:=p$
- $\|\neg \varphi\|_{\mathcal{F}} \quad:=\neg\|\varphi\|_{\mathcal{F}}$
- $\left\|\varphi_{1} \wedge \varphi_{2}\right\|_{\mathcal{F}} \quad:=\left\|\varphi_{1}\right\|_{\mathcal{F}} \wedge\left\|\varphi_{2}\right\|_{\mathcal{F}}$
- $\left\|K_{i} \varphi\right\|_{\mathcal{F}} \quad:=\forall\left(V \backslash O_{i}\right)\left(\theta \rightarrow\|\varphi\|_{\mathcal{F}}\right)$
- \|[! $\varphi] \psi\left\|_{\mathcal{F}} \quad:=\right\| \varphi\left\|_{\mathcal{F}} \rightarrow\right\| \psi \|_{\mathcal{F}^{\varphi}}$

Everything is boolean!

Definition

Fix a knowledge structure $\mathcal{F}=\left(V, \theta, O_{1}, \cdots, O_{n}\right)$.
We define a local boolean translation $\|\cdot\|_{\mathcal{F}}$:

- $\|p\|_{\mathcal{F}} \quad:=p$
- $\|\neg \varphi\|_{\mathcal{F}} \quad:=\neg\|\varphi\|_{\mathcal{F}}$
- $\left\|\varphi_{1} \wedge \varphi_{2}\right\|_{\mathcal{F}} \quad:=\left\|\varphi_{1}\right\|_{\mathcal{F}} \wedge\left\|\varphi_{2}\right\|_{\mathcal{F}}$
- $\left\|K_{i} \varphi\right\|_{\mathcal{F}} \quad:=\forall\left(V \backslash O_{i}\right)\left(\theta \rightarrow\|\varphi\|_{\mathcal{F}}\right)$
- \|[! $\varphi] \psi\left\|_{\mathcal{F}} \quad:=\right\| \varphi\left\|_{\mathcal{F}} \rightarrow\right\| \psi \|_{\mathcal{F}^{\varphi}}$

Theorem

For all scenarios (\mathcal{F}, s) and all formulas φ :
$\mathcal{F}, s \vDash \varphi \Longleftrightarrow s \vDash\|\varphi\|_{\mathcal{F}}$

Example: Symbolic Muddy Children I

$$
\mathcal{F}_{0}=\left(\begin{array}{ll}
& O_{1}=\left\{p_{2}, p_{3}\right\} \\
V=\left\{p_{1}, p_{2}, p_{3}\right\}, \theta_{0}=\top, & O_{2}=\left\{p_{1}, p_{3}\right\} \\
& O_{3}=\left\{p_{1}, p_{2}\right\}
\end{array}\right)
$$

"At least one of you is muddy."

Example: Symbolic Muddy Children I

$$
\mathcal{F}_{0}=\left(\begin{array}{ll}
& O_{1}=\left\{p_{2}, p_{3}\right\} \\
V=\left\{p_{1}, p_{2}, p_{3}\right\}, \theta_{0}=\mathrm{T}, & O_{2}=\left\{p_{1}, p_{3}\right\} \\
& O_{3}=\left\{p_{1}, p_{2}\right\}
\end{array}\right)
$$

"At least one of you is muddy."

$$
\mathcal{F}_{1}=\left(\begin{array}{ll}
& O_{1}=\left\{p_{2}, p_{3}\right\} \\
V=\left\{p_{1}, p_{2}, p_{3}\right\}, \theta_{1}=\left(p_{1} \vee p_{2} \vee p_{3}\right), & O_{2}=\left\{p_{1}, p_{3}\right\} \\
& O_{3}=\left\{p_{1}, p_{2}\right\}
\end{array}\right)
$$

Example: Symbolic Muddy Children I

$$
\mathcal{F}_{0}=\left(\begin{array}{l}
O_{1}=\left\{p_{2}, p_{3}\right\} \\
V=\left\{p_{1}, p_{2}, p_{3}\right\}, \theta_{0}=\top, \\
O_{2}=\left\{p_{1}, p_{3}\right\} \\
O_{3}=\left\{p_{1}, p_{2}\right\}
\end{array}\right)
$$

"At least one of you is muddy."

$$
\mathcal{F}_{1}=\left(\begin{array}{ll}
V=\left\{p_{1}, p_{2}, p_{3}\right\}, \theta_{1}=\left(p_{1} \vee p_{2} \vee p_{3}\right), & O_{1}=\left\{p_{2}, p_{3}\right\} \\
& O_{2}=\left\{p_{1}, p_{3}\right\} \\
O_{3}=\left\{p_{1}, p_{2}\right\}
\end{array}\right)
$$

"Do you know if you are muddy?" ... Nobody reacts.
This announcement is equivalent to:

$$
\left\|\bigwedge_{i \in I}\left(\neg\left(K_{i} p_{i} \vee K_{i} \neg p_{i}\right)\right)\right\|_{\mathcal{F}_{1}}=\left(p_{2} \vee p_{3}\right) \wedge\left(p_{1} \vee p_{3}\right) \wedge\left(p_{1} \vee p_{2}\right)
$$

Magic from 1986: Binary Decision Diagrams

(Read the classic Bryant 1986 for more details.)

BDD Magic I

How long do you need to compare these two formulas?

$$
p_{3} \vee \neg\left(p_{1} \rightarrow p_{2}\right) \equiv \neg\left(p_{1} \wedge \neg p_{2}\right) \rightarrow p_{3}
$$

BDD Magic I

How long do you need to compare these two formulas?

$$
p_{3} \vee \neg\left(p_{1} \rightarrow p_{2}\right) \equiv \neg\left(p_{1} \wedge \neg p_{2}\right) \rightarrow p_{3}
$$

Here are is their BDDs:

BDD Magic II

This was not an accident, BDDs are canonical.
Theorem:

$$
\varphi \equiv \psi \quad \Longleftrightarrow \quad \operatorname{BDD}(\varphi)=\operatorname{BDD}(\psi)
$$

Equivalence checks are free and we have fast algorithms to compute $\operatorname{BDD}(\neg \varphi), \operatorname{BDD}(\varphi \wedge \psi), \operatorname{BDD}(\varphi \rightarrow \psi)$ etc.

Results

Why translate DEL to boolean formulas?
Because computers are incredibly good at dealing with them!

n	DEMO-S5	SMCDEL
6	0.012	0.002
8	0.273	0.004
10	8.424	0.008
11	46.530	0.011
12	228.055	0.015
13	1215.474	0.019
20		0.078
40		0.777
60		2.563

So far, so good ...

This was S5 PAL, what about:

1. Non-S5 relations for belief?
2. Action Models with factual change?

Motivating Example: Sally-Anne

Motivating Example: Sally-Anne

To model this we need non-S5 action models with factual change!

Extension to non-S5

- $O_{i} \subseteq P$ always defines equivalence relations!
- How can we describe other relations?

Extension to non-S5

- $O_{i} \subseteq P$ always defines equivalence relations!
- How can we describe other relations?
- Copy P to describe reachability (Gorogiannis and Ryan 2002)
- Fresh variables $V^{\prime}:=\left\{p^{\prime} \mid p \in V\right\}$ and formulas $\mathcal{L}\left(V \cup V^{\prime}\right)$
- Actually: use BDD of boolean formula describing the relation

Extension to non-S5: From relations to BDDs

Extension to non-S5: Belief Structures

$\mathcal{F}=\left(V, \theta, \Omega_{1}, \cdots, \Omega_{n}\right)$ where

- V
- θ
- $\Omega_{i} \in \mathcal{L}\left(V \cup V^{\prime}\right)$

Vocabulary
State Law
Observables
propositional variables boolean formula over V
encoded relation for i

The equivalent Kripke model is given by:

$$
R_{i} x y: \Longleftrightarrow\left(x \cup y^{\prime}\right) \vDash \Omega_{i}
$$

New translation for modalities:

$$
\left\|\square_{i} \psi\right\|_{\mathcal{F}}:=\forall V^{\prime}\left(\theta^{\prime} \rightarrow\left(\Omega_{i} \rightarrow\left(\|\varphi\|_{\mathcal{F}}\right)^{\prime}\right)\right)
$$

The return of the postcondition

1. Dynamic Epistemic Logic
2. Symbolic Model Checking
3. Factual Change

Transformers

Definition

A transformer for V is a tuple $\mathcal{X}=\left(V^{+}, \theta^{+}, V_{-}, \theta_{-}, \Omega^{+}\right)$where

- V^{+}is a set of fresh atomic propositions s.t. $V \cap V^{+}=\varnothing$
- θ^{+}is a possibly epistemic formula from $\mathcal{L}\left(V \cup V^{+}\right)$
- $V_{-} \subseteq V$ is the modified subset of the original vocabulary
- $\theta_{-}: V_{-} \rightarrow \mathcal{L}_{B}\left(V \cup V^{+}\right)$encodes postconditions
- $\Omega_{i}^{+} \in \mathcal{L}_{B}\left(V^{+} \cup V^{+\prime}\right)$ describe observations for each i
to transform $\mathcal{F}=\left(V, \theta, \Omega_{i}\right)$, let $\mathcal{F} \times \mathcal{X}:=\left(V^{\text {new }}, \theta^{\text {new }}, \Omega_{i}^{\text {new }}\right)$ where

1. $V^{\text {new }}:=V \cup V^{+} \cup V_{-}^{\circ}$
2. $\theta^{\text {new }}:=$

$$
\left[V_{-} / V_{-}^{\circ}\right]\left(\theta \wedge\left\|\theta^{+}\right\|_{\mathcal{F}}\right) \wedge \wedge_{q \in V^{-}}\left(q \leftrightarrow\left[V_{-} / V_{-}^{\circ}\right]\left(\theta_{-}(q)\right)\right)
$$

3. $\Omega_{i}^{\text {new }}:=\left(\left[V_{-} / V_{-}^{\circ}\right]\left[\left(V_{-}\right)^{\prime} /\left(V_{-}^{\circ}\right)^{\prime}\right] \Omega_{i}\right) \wedge \Omega_{i}^{+}$

Simple Example: Coin Flip hidden from a

$$
\begin{array}{llll}
& (V=\{p\}, & \theta=p, & \Omega_{a}=\top, \\
\times & \left(V_{b}=\top\right) \\
V_{-}=\{q\}, & \theta^{+}=\top, & \Omega_{a}^{+}=\top, & \left.\Omega_{b}^{+}=q \leftrightarrow q^{\prime}\right) \\
=\left(V=\left\{p, q, p^{\circ}\right\}\right. & \theta=p^{\circ} \wedge(p \leftrightarrow q), & \Omega_{a}=\top & \left.\Omega_{b}=q \leftrightarrow q^{\prime}\right)
\end{array}
$$

Monster Example: Symbolic Sally-Anne I

- Sally is in the room: p, Marble is in the box: t
- Question after the actions: Does Sally believe that the marble is in the box: $\square_{s} t$?

Monster Example: Symbolic Sally-Anne I

- Sally is in the room: p, Marble is in the box: t
- Question after the actions: Does Sally believe that the marble is in the box: $\square_{s} t$?

Initial structure: $((\{p, t\},(p \wedge \neg t), \top, \top), p)$
\mathcal{X}_{1} : Sally puts the marble in the basket:

$$
\left(\left(\varnothing, \top,\{t\}, \theta_{-}(t)=\top, \top, \top\right), \varnothing\right) .
$$

\mathcal{X}_{2} : Sally leaves: $\left(\left(\varnothing, \top,\{p\}, \theta_{-}(p)=\perp, \top, \top\right), \varnothing\right)$.
\mathcal{X}_{3} : Anne puts the marble in the box, not observed by Sally:

$$
\left(\left(\{q\}, \top,\{t\}, \theta_{-}(t)=(\neg q \rightarrow t) \wedge(q \rightarrow \perp), \neg q^{\prime}, q \leftrightarrow q^{\prime}\right),\{q\}\right)
$$

\mathcal{X}_{4} : Sally comes back: $\left(\left(\varnothing, \top,\{p\}, \theta_{-}(p)=\top, \top, \top\right), \varnothing\right)$.

The slide we will skip

$$
\begin{array}{ll}
& ((\{p, t\},(p \wedge \neg t), \top, \top), p) \\
\times & \left(\left(\varnothing, \top,\{t\}, \theta_{-}(t)=\top, \top, \top\right), \varnothing\right) \\
=\quad & \left(\left(\left\{p, t, t^{\circ}\right\},\left(p \wedge \neg t^{\circ}\right) \wedge t, \top, \top\right),\{p, t\}\right) \\
\times & \left(\left(\varnothing, \top,\{p\}, \theta_{-}(p)=\perp, \top, \top\right), \varnothing\right) \\
= & \left(\left(\left\{p, t, t^{\circ}, p^{\circ}\right\},\left(p^{\circ} \wedge \neg t^{\circ}\right) \wedge t \wedge \neg p, \top, \top\right),\left\{t, p^{\circ}\right\}\right) \\
\equiv \vee & ((\{p, t\}, t \wedge \neg p, \top, \top),\{t\}) \\
\times \quad & \left(\left(\{q\}, \top,\{t\}, \theta_{-}(t)=(\neg q \rightarrow t) \wedge(q \rightarrow \perp), \neg q^{\prime}, q \leftrightarrow q^{\prime}\right),\{q\}\right) \\
= & \left(\left(\left\{p, t, q, t^{\circ}\right\}, t^{\circ} \wedge \neg p \wedge\left(t \leftrightarrow\left(\left(\neg q \rightarrow t^{\circ}\right) \wedge(q \rightarrow \perp)\right)\right), \neg q^{\prime}, q \leftrightarrow q^{\prime}\right),\{q\}\right. \\
= & \left(\left(\left\{p, t, q, t^{\circ}\right\}, t^{\circ} \wedge \neg p \wedge(t \leftrightarrow \neg q), \neg q^{\prime}, q \leftrightarrow q^{\prime}\right),\{q\}\right) \\
\equiv v & \left(\left(\{p, t, q\}, \neg p \wedge(t \leftrightarrow \neg q), \neg q^{\prime}, q \leftrightarrow q^{\prime}\right),\{q\}\right) \\
\times & \left(\left(\varnothing, \top,\{p\}, \theta_{-}(p)=\top, \top, \top\right), \varnothing\right) \\
= & \left(\left(\left\{p, t, q, p^{\circ}\right\}, \neg p^{\circ} \wedge(t \leftrightarrow \neg q) \wedge p, \neg q^{\prime}, q \leftrightarrow q^{\prime}\right),\{p, q\}\right) \\
\equiv v & \left(\left(\{p, t, q\},(t \leftrightarrow \neg \neg) \wedge p, \neg q^{\prime}, q \leftrightarrow q^{\prime}\right),\{p, q\}\right)
\end{array}
$$

Everything on the previous scary slide are boolean operations, so we blindly trust a computer to deal with it.

Monster Example: Symbolic Sally-Anne IIII

In the last scene Sally believes the marble is in the basket:

$$
\begin{array}{ll}
& \{p, q\} \vDash \square_{s t} \\
\Longleftrightarrow & \{p, q\} \vDash \forall V^{\prime}\left(\theta^{\prime} \rightarrow\left(\Omega_{\mathrm{s}} \rightarrow t^{\prime}\right)\right) \\
\Longleftrightarrow & \{p, q\} \vDash \forall\left\{p^{\prime}, t^{\prime}, q^{\prime}\right\}\left(\left(t^{\prime} \leftrightarrow \neg q^{\prime}\right) \wedge p^{\prime} \rightarrow\left(\neg q^{\prime} \rightarrow t^{\prime}\right)\right) \\
\Longleftrightarrow & \{p, q\} \vDash T
\end{array}
$$

(François Schwarzentruber: Hintikka's world)

Summary

- representation matters!
- symbolic model checking DEL gives a big speed-up
- knowledge/belief structures encode Kripke models
- transformers provide a modular approach for ontic and epistemic actions

Future Work

- Comparison with (Charrier and Schwarzentruber 2017)
- Find big examples and benchmark!
- Limit postconditions to T and \perp ?
github.com/jrclogic/SMCDEL

Bonus Slide: Comparison with Mental Programs / Succinct DEL

Similar approach in (Charrier and Schwarzentruber 2017). Mental programs describe which change is allowed: $q \mapsto T, p \mapsto q, \ldots$

- Observational BDDs and mental programs are dual in memory consumption:

Relation	BDD	Mental Program
Identity	$2 \cdot\|V\|$	1
Total	1	$2 \cdot\|V\|$

References

Baltag, Alexandru, Lawrence S. Moss, and Slawomir Solecki. 1998. "The logic of public announcements, common knowledge, and private suspicions." In TARK'98, edited by I. Bilboa, 43-56. https://dl.acm.org/citation.cfm?id=645876.671885.

Benthem, Johan van, Jan van Eijck, and Barteld Kooi. 2006. "Logics of communication and change." Information and Computation 204 (11). Elsevier: 1620-62. https://doi.org/d3j48n.

Bryant, Randal E. 1986. "Graph-Based Algorithms for Boolean Function Manipulation." IEEE Transaction on Computers C-35 (8): 677-91. https://doi.org/bnrh63.

Charrier, Tristan, and François Schwarzentruber. 2017. "A Succinct Language for Dynamic Epistemic Logic." In Proceedings of the 16th Conference on Autonomous Agents and Multiagent Systems, 123-31. AAMAS '17. S\&\#227;0 Paulo, Brazil: International Foundation for Autonomous Agents; Multiagent Systems. http://www.aamas2017.org/proceedings/pdfs/p123.pdf.

Gorogiannis, Nikos, and Mark D. Ryan. 2002. "Implementation of Belief Change Operators Using BDDs." Studia Logica 70 (1). Kluwer Academic Publishers: 131-56. doi:10.1023/A:1014610426691.

