$\begin{array}{l} {\sf Mode}\lambda \ {\sf Checking} \ {\sf DEL} \ {\rm for} \\ {\sf Guessing} \ {\sf Games} \ {\rm and} \ {\sf Cryptography} \end{array}$

Malvin Gattinger

ILLC, Amsterdam

October 3rd 2014

LiRA-Workshop "The Logical Dynamics of Information, Agency and Interaction"

Outline

- Guessing Games
 - Register Models
 - Syntax and Semantics
 - Axiomatization

2 Cryptography

- Communication
- Computation
- Example: Diffie-Hellman

3 Model Checking

- Live Demo
- Monte Carlo Method

Guessing Games

Cryptography Model Checking Conclusion Register Models Syntax and Semantics Axiomatization

Guessing Games

Register Models Syntax and Semantics Axiomatization

What does it mean to know a number?

- JAN: "I have a number in mind, in the range from one to ten. You may take turns guessing. Whoever guesses the number first wins."
- GAIA: "But how can we know you are not cheating?"
- ROSA: "Please write down the number before we start guessing, so you can show it afterwards as a proof." JAN: "Okay."

[Jan writes 6 on a piece of paper, hidden from Gaia and Rosa.]

Register Models Syntax and Semantics Axiomatization

What does it mean to know a number?

Register Models Syntax and Semantics Axiomatization

What does it mean to know a number?

Register Models Syntax and Semantics Axiomatization

Models

Definition (Guessing Game Models)

 $\mathcal{M} = (W, \mathcal{R}, V)$ where

- (W, \mathcal{R}) is a multi-agent S5 frame,
- $V: w \mapsto (P_w, f_w, C_w^+, C_w^-)$ is a valuation:
 - $P_w \subseteq \mathbf{P}$ are the basic propositions true at w,
 - f_w is a function that assigns to some propositions $q \in Q$ triples (n, m, X), meaning that the value of q is between n and m but not in X. We also demand that
 - (i) whenever $q \in P_w$ then n = m and $X = \emptyset$
 - (ii) whenever $q \in P_v \cap P_w$ for $v, w \in W$ then $f_v(q) = f_w(q)$
 - $C_w^+, C_w^- \subseteq Q^2$ are in/equality constraints in the following sense: $(p,q) \in C_w^+$ expresses that p and q have the same values and $(p,q) \in C_w^-$ expresses that p and q have different values at w.

Guessing Games

Cryptography Model Checking Conclusion Register Models Syntax and Semantics Axiomatization

Models

Example

Register Models Syntax and Semantics Axiomatization

Updates (two examples)

Register Creation $p \stackrel{i}{\leftarrow} N$: Create secret variable p for agent i with value N.

- *p* must be globally false before.
- Copy all worlds, let p = N at the new worlds and let p have any other value at the others.
- Connect the worlds for everyone but *i*.

Announcement !p = q: Tell everyone that p = q.

- p = q must be true at the current world.
- Where p and q are false, add p = q to the constraints.

Exact definitions: Action structures as in [BMS98] and [BEK06].

Guessing Games

Cryptography Model Checking Conclusion Register Models Syntax and Semantics Axiomatization

Syntax

 $\begin{array}{l} \textbf{Definition} \ (Language) \\ \text{The language} \ \mathcal{L}_{GG} \ consists \ of \ formulas, \ commands \ and \ expressions: \end{array}$

$$\phi ::= \top | \mathbf{p} | \mathbf{p} = \mathbf{E} | \neg \phi | \phi \land \phi | K_i \phi | G\phi | \langle C \rangle \phi$$

$$C ::= !p = E | !p \neq E | p \stackrel{i}{\leftarrow} N | C; C$$

 $E ::= p \mid N$

Register Models Syntax and Semantics Axiomatization

Assignments

Definition (Assignments and Agreement) An assignment is a function $h : \operatorname{Prop} \to \mathbb{N}$. It *agrees* with a world $(h \multimap w)$ iff

- for all $q \in Q$: $f^0_w(q) \le h(q) \le f^1_w(q)$ and $h(q)
 ot\in f^2_w(q)$
- positive constraints C_w^+ : if $(p,q) \in C_w^+$ then h(p) = h(q)
- negative constraints C_w^- : if $(p,q) \in C_w^-$ then $h(p) \neq h(q)$.

Example

 $h = \{p \mapsto 6, p_1 \mapsto 5\}$ agrees with **0**, but not with **3**.

Register Models Syntax and Semantics Axiomatization

Semantics

Definition (Truth with regard to assignments)

$$\begin{array}{lll} \mathcal{M}, w, h \models \top & \text{always} \\ \mathcal{M}, w, h \models p & \text{iff} \quad p \in P_w \\ \mathcal{M}, w, h \models p_1 = p_2 & \text{iff} \quad h(p_1) = h(p_2) \\ \mathcal{M}, w, h \models p = N & \text{iff} \quad h(p) = N \\ \mathcal{M}, w, h \models \neg \phi & \text{iff} \quad \text{not} \ \mathcal{M}, w, h \models \phi \\ \mathcal{M}, w, h \models \phi_1 \land \phi_2 & \text{iff} \quad \mathcal{M}, w, h \models \phi_1 \text{ and } \ \mathcal{M}, w, h \models \phi_2 \\ \mathcal{M}, w, h \models K_i \phi & \text{iff} \quad wR_i w' \Rightarrow \forall h' \frown w' : \ \mathcal{M}, w', h' \models \phi \\ \mathcal{M}, w, h \models G \phi & \text{iff} \quad \forall w' \in W \forall h' \frown w' : \ \mathcal{M}, w', h' \models \phi \\ \mathcal{M}, w, h \models \langle P = E \rangle \phi & \text{iff} \quad \mathcal{M}, w, h \models p = E \text{ and } \ \mathcal{M}^{!p = E}, w, h \models \phi \\ \mathcal{M}, w, h \models \langle ! \ p = E \rangle \phi & \text{iff} \quad \mathcal{M}, w, h \models p \neq E \text{ and } \ \mathcal{M}^{!p \neq E}, w, h \models \phi \\ \mathcal{M}, w, h \models \langle p \stackrel{i}{\leftarrow} N \rangle \phi & \text{iff} \quad \mathcal{M}, w, h \models G \neg p \text{ and} \\ \mathcal{M}^{p \stackrel{i}{\leftarrow} N}, w, (h \cup \{(p, N)\}) \models \phi \\ \mathcal{M}, w, h \models \langle A_1; A_2 \rangle \phi & \text{iff} \quad \mathcal{M}, w, h \models \langle A_1 \rangle \langle A_2 \rangle \phi \end{array}$$

Register Models Syntax and Semantics Axiomatization

Semantics

Definition (World Level Truth)

$$\mathcal{M}, w \models \phi$$
 iff $\forall h$ with $w \multimap h : \mathcal{M}, w, h \models \phi$.

A formula ϕ is *valid* iff for all \mathcal{M}, w we have $\mathcal{M}, w \vDash \phi$. We then write $\vDash \phi$.

This leaves some formulas undecided on the world level. But we still have:

Theorem

For all \mathcal{M} , w, i and ϕ we have either \mathcal{M} , $w \models K_i \phi$ or \mathcal{M} , $w \models K_i \phi$.

Register Models Syntax and Semantics Axiomatization

Reduction Axioms (some of them)

P5)
$$\langle !p = E \rangle \widehat{K_i} \phi \leftrightarrow (p = E \land \widehat{K_i} (\langle !p = E \rangle \phi))$$

P6) $\langle !p = E \rangle G \phi \leftrightarrow (p = E \land G(p = E \rightarrow \langle !p = E \rangle \phi))$
R3a1) $\langle p \stackrel{i}{\leftarrow} N \rangle (p = N) \leftrightarrow (G \neg p)$
R3a1') $\langle p \stackrel{i}{\leftarrow} N \rangle (p = M) \leftrightarrow \bot$ where $M \neq N$
R3a2) $\langle p \stackrel{i}{\leftarrow} N \rangle (q = M) \leftrightarrow (G \neg p \land (q = M))$ where $p \neq q$
R3b1) $\langle p \stackrel{i}{\leftarrow} N \rangle (p = p) \leftrightarrow (G \neg p \land (q = N))$ where $p \neq q$
R3b2') $\langle p \stackrel{i}{\leftarrow} N \rangle (q = p) \leftrightarrow (G \neg p \land (q = N))$ where $p \neq q$
R3b2') $\langle p \stackrel{i}{\leftarrow} N \rangle (q = r) \leftrightarrow (G \neg p \land (q = N))$ where $p \neq q$
R3b2') $\langle p \stackrel{i}{\leftarrow} N \rangle (q = r) \leftrightarrow (G \neg p \land (q = r))$ where $p \neq q$ and $p \neq r$
R6) $\langle p \stackrel{i}{\leftarrow} N \rangle (K_i \phi) \leftrightarrow (G \neg p \land K_i (G \neg p \rightarrow \langle p \stackrel{i}{\leftarrow} N \rangle \phi))$
R7) $\langle p \stackrel{i}{\leftarrow} N \rangle (K_j \phi) \leftrightarrow (G \neg p \land K_j \phi)$ where $j \neq i$
R8) $\langle p \stackrel{i}{\leftarrow} N \rangle (G \phi) \leftrightarrow G (\langle p \stackrel{i}{\leftarrow} N \rangle \phi)$

Guessing Games

Cryptography Model Checking Conclusion Register Models Syntax and Semantics Axiomatization

Axiomatization

Theorem (Soundness) All reduction axioms are valid.

Definition (Proof System)

We write $\vdash \phi$ iff ϕ is provable using propositional tautologies, standard rules for the S5 modalities K_i and the global modality G and the reduction axioms.

Theorem (Completeness) For all $\phi \in \mathcal{L}_{GG}$, if $\vDash \phi$, then $\vdash \phi$.

Communication Computation Example: Diffie-Hellman

Cryptography

Communication Computation Example: Diffie-Hellman

Communication

"Let me tell you a secret ..."

Goal: Model the intended audience, but also eavesdropping.

- New proposition: $w \vDash L_i$ means Agent *i* is listening at *w*.
- Two new commands: $\langle \mathbf{Open}_i \rangle$ and $\langle \mathbf{Close}_i \rangle$.
- Announcements are only heard by the current listeners.

Communication Computation Example: Diffie-Hellman

Computation

"If I know that p = 5 then I also know that p + p = 10."

Goal: Give agents some (realistic) computational power. For now: Primality-Testing and modular arithmetic, which are both assumed to be feasible in Cryptography.

- New propositions: PrimeE, CoprimeEE
- New expressions: $E + E \mod E$, $E \times E \mod E$, $E^E \mod E$

Communication Computation Example: Diffie-Hellman

The full language

Definition (Language)

The language \mathcal{L}_{ECL} consists of the following formulas, commands and expressions.

$$\phi ::= \top | p | L_i | p = E | \neg \phi | \phi \land \phi | K_i \phi | G\phi | \langle C \rangle \phi$$

| Prime E | Coprime E E

$$C ::= p \stackrel{i}{\leftarrow} E | \mathbf{Open}_i | \mathbf{Close}_i | !p | !p = N | !p = p \\ | !p \neq N | !p \neq p | ?\phi$$

 $E ::= p \mid N \mid E + E \mod E \mid E \times E \mod E \mid E^E \mod E$

Communication Computation Example: Diffie-Hellman

The Diffie-Hellman Key Exchange

(Whitfield Diffie and Martin Hellman [DH76])

- Alice and Bob agree on a prime p and a base g g and p 1 are coprime.
- 2 Alice picks a secret N and sends $g^N \mod p = A$ to Bob.
- Solution Bob picks a secret M and sends $g^M \mod p = B$ to Alice.
- Alice calculates $k = B^N \mod p$.
- Solution Bob calculates $k = A^M \mod p$.

• They now have a shared key $k = (g^M)^N = (g^N)^M \mod p$. If the Diffie-Hellman problem is hard, Eve does not know k. NB: The protocol is only secure against *passive* eavesdroppers.

Communication Computation Example: Diffie-Hellman

Diffie-Hellman in ECL

Let \mathcal{M}_{DH} be the blissful ignorance model for Alice, Bob and Eve. Let $\mathbf{DH}_{g,p,N,M}$ be the command:

Coprime
$$g (p-1)$$
;
 $q_1 \stackrel{a}{\leftarrow} N$; $r_1 \stackrel{a}{\leftarrow} (g^{q_1} \mod p)$; **Open**_b; $!r_1$; **Close**_b;
 $q_2 \stackrel{b}{\leftarrow} M$; $r_2 \stackrel{b}{\leftarrow} (g^{q_2} \mod p)$; **Open**_a; $!r_2$; **Close**_a;
 $s_1 \stackrel{a}{\leftarrow} r_2^{q_1} \mod p$; $s_2 \stackrel{b}{\leftarrow} r_1^{q_2} \mod p$

Let $\psi_{DH} := (s_1 = s_2) \land (K_a s_1 \land K_b s_2) \land (\neg K_e s_1 \land \neg K_e s_2)$. Then we have:

$$\mathcal{M}_{\mathsf{DH}}, w \vDash \langle \mathsf{DH}_{g,p,N,M} \rangle \psi_{\mathsf{DH}}$$

Live Demo Monte Carlo Method

Model Checking

Live Demo Monte Carlo Method

Live Demo

Example 1

Creating a secret number for Alice and telling Bob about it.

Example 2

Order matters: "Hey Bob! Hey Alice!" \neq "Hey Alice! Hey Bob!"

Live Demo Monte Carlo Method

Monte Carlo Method

 $\mathcal{M}, w \models \phi$ iff for some randomly picked $h \multimap w : \mathcal{M}, w, h \models \phi$ For many formulas we do not have to check all possible assignments. Example: Is $K_a(p = q)$ is true at **0**?

No, and checking one assignment at ${f 1}$ suffices.

NB: There are also cases where this almost always goes wrong.

Live Demo Monte Carlo Method

Normal VS. Monte-Carlo Methods

How long does it take to check $\mathcal{M}_{\mathsf{DH}}, w \vDash \langle \mathsf{DH}_{g,p,N,M} \rangle \psi_{\mathsf{DH}}$?

registersize	Normal	Monte Carlo
2 ⁸	1.07	2.74
2 ⁹	1.36	2.82
2 ¹⁰	2.13	3.41
2 ¹¹	3.59	3.24
2 ¹²	5.17	2.8
2 ¹³	11.56	3.28
2 ¹⁴	22.66	3.57
2 ¹⁵	44.44	4.1
2 ¹⁶	81.26	3.52

Conclusion

Conclusion

- To know a number is to distinguish a true value from all others
- Register models for DEL: reduce "Knowledge of" to "Knowledge that"
- Axiomatization for GG
- Explicit communication and computation in ECL
- Example: Diffie-Hellman
- Implemented both frameworks in Haskell
- Efficient but probabilistic Monte Carlo method
- Future ideas: axiomatize full ECL, improve implementation, non-S5, other protocols, automated attack finding, ...

References

Johan van Benthem, Jan van Eijck, and Barteld Kooi. Logics of communication and change. Information and computation, 204(11):1620–1662, 2006.

Alexandru Baltag, Lawrence S. Moss, and Slawomir Solecki.

The logic of public announcements, common knowledge, and private suspicions. In I. Bilboa, editor, *Proceedings of TARK'98*, pages 43–56, 1998.

Whitfield Diffie and Martin Hellman.

New directions in cryptography.

Information Theory, IEEE Transactions on, 22(6):644-654, 1976.

Thank you.

http://is.gd/eclonline