$\begin{tabular}{ll} Mode λ Checking DEL for \\ Guessing Games and Cryptography \\ \end{tabular}$

Malvin Gattinger

ILLC, Amsterdam

October 3rd 2014

LiRA-Workshop "The Logical Dynamics of Information, Agency and Interaction"

Outline

- Guessing Games
 - Register Models
 - Syntax and Semantics
 - Axiomatization
- 2 Cryptography
 - Communication
 - Computation
 - Example: Diffie-Hellman
- Model Checking
 - Live Demo
 - Monte Carlo Method
- 4 Conclusion

Guessing Games Cryptography Model Checking Conclusion

Register Models Syntax and Semantics Axiomatization

Guessing Games

What does it mean to know a number?

JAN: "I have a number in mind, in the range from one to ten. You may take turns guessing. Whoever guesses the number first wins."

GAIA: "But how can we know you are not cheating?"

ROSA: "Please write down the number before we start guessing, so you can show it afterwards as a proof."

JAN: "Okay."

[Jan writes 6 on a piece of paper, hidden from Gaia and Rosa.]

What does it mean to know a number?

What does it mean to know a number?

Agents: Jan, Gaia, Rosa

Models

Definition (Guessing Game Models)

$$\mathcal{M} = (W, \mathcal{R}, V)$$
 where

- (W, \mathcal{R}) is a multi-agent S5 frame,
- $V: w \mapsto (P_w, f_w, C_w^+, C_w^-)$ is a valuation:
 - $P_w \subseteq \mathbf{P}$ are the basic propositions true at w,
 - f_w is a function that assigns to some propositions $q \in Q$ triples (n, m, X), meaning that the value of q is between n and m but not in X. We also demand that
 - (i) whenever $q \in P_w$ then n = m and $X = \emptyset$
 - (ii) whenever $q \in P_v \cap P_w$ for $v, w \in W$ then $f_v(q) = f_w(q)$
 - $C_w^+, C_w^- \subseteq Q^2$ are in/equality constraints in the following sense: $(p,q) \in C_w^+$ expresses that p and q have the same values and $(p,q) \in C_w^-$ expresses that p and q have different values at w.

Models

Example

Updates (two examples)

Register Creation $p \stackrel{i}{\leftarrow} N$: Create secret variable p for agent i with value N.

- p must be globally false before.
- Copy all worlds, let p = N at the new worlds and let p have any other value at the others.
- Connect the worlds for everyone but i.

Announcement !p = q: Tell everyone that p = q.

- p = q must be true at the current world.
- Where p and q are false, add p = q to the constraints.

Exact definitions: Action structures as in [BMS98] and [BEK06].

Syntax

Definition (Language)

The language \mathcal{L}_{GG} consists of formulas, commands and expressions:

Assignments

Definition (Assignments and Agreement)

An assignment is a function $h : \mathsf{Prop} \to \mathbb{N}$.

It agrees with a world $(h \smile w)$ iff

- for all $g \in Q$: $f_w^0(g) < h(g) < f_w^1(g)$ and $h(g) \notin f_w^2(g)$
- positive constraints C_w^+ : if $(p,q) \in C_w^+$ then h(p) = h(q)
- negative constraints C_w^- : if $(p,q) \in C_w^-$ then $h(p) \neq h(q)$.

Example

$$h = \{p \mapsto 6, p_1 \mapsto 5\}$$
 agrees with $\mathbf{0}$, but not with $\mathbf{3}$.

Semantics

Definition (Truth with regard to assignments)

$$\begin{array}{lll} \mathcal{M},w,h\models \top & \text{always} \\ \mathcal{M},w,h\models p & \text{iff} \quad p\in P_w \\ \mathcal{M},w,h\models p_1=p_2 & \text{iff} \quad h(p_1)=h(p_2) \\ \mathcal{M},w,h\models p=N & \text{iff} \quad h(p)=N \\ \mathcal{M},w,h\models \neg\phi & \text{iff} \quad \text{not} \ \mathcal{M},w,h\models \phi \\ \mathcal{M},w,h\models A_2 & \text{iff} \quad \mathcal{M},w,h\models \phi_1 \text{ and} \ \mathcal{M},w,h\models \phi_2 \\ \mathcal{M},w,h\models K_i\phi & \text{iff} \quad wR_iw'\Rightarrow \forall h'\circ -w':\mathcal{M},w',h'\models \phi \\ \mathcal{M},w,h\models G\phi & \text{iff} \quad \forall w'\in W\forall h'\circ -w':\mathcal{M},w',h'\models \phi \\ \mathcal{M},w,h\models \langle ! \ p=E\rangle\phi & \text{iff} \quad \mathcal{M},w,h\models p=E \text{ and} \ \mathcal{M}^{!p=E},w,h\models \phi \\ \mathcal{M},w,h\models \langle ! \ p\neq E\rangle\phi & \text{iff} \quad \mathcal{M},w,h\models p\neq E \text{ and} \ \mathcal{M}^{!p\neq E},w,h\models \phi \\ \mathcal{M},w,h\models \langle p \stackrel{\longleftarrow}{\leftarrow} N\rangle\phi & \text{iff} \quad \mathcal{M},w,h\models G\neg p \text{ and} \\ \mathcal{M}^{p\stackrel{\longleftarrow}{\leftarrow} N},w,(h\cup \{(p,N)\})\models \phi \\ \mathcal{M},w,h\models \langle A_1;A_2\rangle\phi & \text{iff} \quad \mathcal{M},w,h\models \langle A_1\rangle\langle A_2\rangle\phi \end{array}$$

Semantics

Definition (World Level Truth)

$$\mathcal{M}, w \models \phi$$
 iff $\forall h$ with $w \multimap h : \mathcal{M}, w, h \models \phi$.

A formula ϕ is *valid* iff for all \mathcal{M} , w we have \mathcal{M} , $w \models \phi$. We then write $\models \phi$.

This leaves some formulas undecided on the world level.

But we still have:

Theorem

For all \mathcal{M} , w, i and ϕ we have either \mathcal{M} , $w \models K_i \phi$ or \mathcal{M} , $w \models K_i \phi$.

Reduction Axioms (some of them)

P5)
$$\langle !p = E \rangle \widehat{K_i} \phi \leftrightarrow (p = E \land \widehat{K_i} (\langle !p = E \rangle \phi))$$

P6) $\langle !p = E \rangle G \phi \leftrightarrow (p = E \land G(p = E \rightarrow \langle !p = E \rangle \phi))$
R3a1) $\langle p \stackrel{i}{\leftarrow} N \rangle (p = N) \leftrightarrow (G \neg p)$
R3a1') $\langle p \stackrel{i}{\leftarrow} N \rangle (p = M) \leftrightarrow \bot$ where $M \neq N$
R3a2) $\langle p \stackrel{i}{\leftarrow} N \rangle (q = M) \leftrightarrow (G \neg p \land (q = M))$ where $p \neq q$
R3b1) $\langle p \stackrel{i}{\leftarrow} N \rangle (p = p) \leftrightarrow (G \neg p)$
R3b1') $\langle p \stackrel{i}{\leftarrow} N \rangle (p = q) \leftrightarrow (G \neg p \land (q = N))$ where $p \neq q$
R3b2) $\langle p \stackrel{i}{\leftarrow} N \rangle (q = p) \leftrightarrow (G \neg p \land (q = N))$ where $p \neq q$
R3b2') $\langle p \stackrel{i}{\leftarrow} N \rangle (q = p) \leftrightarrow (G \neg p \land (q = N))$ where $p \neq q$ and $p \neq r$
R6) $\langle p \stackrel{i}{\leftarrow} N \rangle (K_i \phi) \leftrightarrow (G \neg p \land K_i (G \neg p \rightarrow \langle p \stackrel{i}{\leftarrow} N \rangle \phi))$
R7) $\langle p \stackrel{i}{\leftarrow} N \rangle (K_j \phi) \leftrightarrow (G \neg p \land K_j \phi)$ where $j \neq i$
R8) $\langle p \stackrel{i}{\leftarrow} N \rangle (G \phi) \leftrightarrow G(\langle p \stackrel{i}{\leftarrow} N \rangle \phi)$

Axiomatization

Theorem (Soundness)

All reduction axioms are valid.

Definition (Proof System)

We write $\vdash \phi$ iff ϕ is provable using propositional tautologies, standard rules for the S5 modalities K_i and the global modality G and the reduction axioms.

Theorem (Completeness)

For all $\phi \in \mathcal{L}_{\mathsf{GG}}$, if $\vDash \phi$, then $\vdash \phi$.

Guessing Games Cryptography Model Checking Conclusion

Communication Computation Example: Diffie-Hellman

Cryptography

Communication

"Let me tell you a secret ..."

Goal: Model the intended audience, but also eavesdropping.

- New proposition: $w \models L_i$ means Agent i is listening at w.
- Two new commands: $\langle \mathbf{Open}_i \rangle$ and $\langle \mathbf{Close}_i \rangle$.
- Announcements are only heard by the current listeners.

Computation

"If I know that p=5 then I also know that p+p=10."

Goal: Give agents some (realistic) computational power. For now: Primality-Testing and modular arithmetic, which are both assumed to be feasible in Cryptography.

- New propositions: PrimeE, CoprimeEE
- New expressions: $E + E \mod E$, $E \times E \mod E$, $E^E \mod E$

The full language

Definition (Language)

The language \mathcal{L}_{ECL} consists of the following formulas, commands and expressions.

$$\phi ::= \top \mid p \mid L_i \mid p = E \mid \neg \phi \mid \phi \land \phi \mid K_i \phi \mid G \phi \mid \langle C \rangle \phi$$
$$\mid \textbf{Prime } E \mid \textbf{Coprime } E \mid E$$

$$C ::= p \stackrel{i}{\leftarrow} E \mid \mathbf{Open}_i \mid \mathbf{Close}_i \mid !p \mid !p = N \mid !p = p \\ \mid !p \neq N \mid !p \neq p \mid ?\phi$$

$$E ::= p \mid N \mid E + E \mod E \mid E \times E \mod E \mid E^E \mod E$$

The Diffie-Hellman Key Exchange

(Whitfield Diffie and Martin Hellman [DH76])

- Alice and Bob agree on a prime p and a base g < p such that g and p-1 are coprime.
- ② Alice picks a secret N and sends $g^N \mod p = A$ to Bob.
- 3 Bob picks a secret M and sends $g^M \mod p = B$ to Alice.
- Alice calculates $k = B^N \mod p$.
- **5** Bob calculates $k = A^M \mod p$.
- **1** They now have a shared key $k = (g^M)^N = (g^N)^M \mod p$.

If the Diffie-Hellman problem is hard, Eve does not know k.

NB: The protocol is only secure against passive eavesdroppers.

Diffie-Hellman in ECL

Let \mathcal{M}_{DH} be the blissful ignorance model for Alice, Bob and Eve. Let $\mathbf{DH}_{g,p,N,M}$ be the command:

Coprime
$$g(p-1)$$
; $q_1 \stackrel{a}{\leftarrow} N$; $r_1 \stackrel{a}{\leftarrow} (g^{q_1} \bmod p)$; Open_b; $!r_1$; Close_b; $q_2 \stackrel{b}{\leftarrow} M$; $r_2 \stackrel{b}{\leftarrow} (g^{q_2} \bmod p)$; Open_a; $!r_2$; Close_a; $s_1 \stackrel{a}{\leftarrow} r_2^{q_1} \bmod p$; $s_2 \stackrel{b}{\leftarrow} r_1^{q_2} \bmod p$

Let
$$\psi_{DH} := (s_1 = s_2) \wedge (K_a s_1 \wedge K_b s_2) \wedge (\neg K_e s_1 \wedge \neg K_e s_2)$$
.
Then we have:

$$\mathcal{M}_{\mathsf{DH}}, w \vDash \langle \mathsf{DH}_{\mathsf{g},p,N,M} \rangle \psi_{\mathsf{DH}}$$

Guessing Games Cryptography Model Checking Conclusion

Live Demo Monte Carlo Method

Model Checking

Live Demo

Example 1

Creating a secret number for Alice and telling Bob about it.

Example 2

Order matters: "Hey Bob! Hey Alice!" \neq "Hey Alice! Hey Bob!"

Monte Carlo Method

 $\mathcal{M}, w \approx \phi$ iff for some randomly picked $h \sim w : \mathcal{M}, w, h \models \phi$

For many formulas we do not have to check all possible assignments.

Example: Is $K_a(p=q)$ is true at **0**?

No, and checking one assignment at 1 suffices.

NB: There are also cases where this almost always goes wrong.

Normal VS. Monte-Carlo Methods

How long does it take to check \mathcal{M}_{DH} , $w \models \langle DH_{g,p,N,M} \rangle \psi_{DH}$?

registersize	Normal	Monte Carlo
28	1.07	2.74
2^{9}	1.36	2.82
2^{10}	2.13	3.41
2^{11}	3.59	3.24
2^{12}	5.17	2.8
2^{13}	11.56	3.28
2^{14}	22.66	3.57
2^{15}	44.44	4.1
2^{16}	81.26	3.52

Guessing Games Cryptography Model Checking Conclusion

Conclusion

Conclusion

- To know a number is to distinguish a true value from all others
- Register models for DEL: reduce "Knowledge of" to "Knowledge that"
- Axiomatization for GG
- Explicit communication and computation in ECL
- Example: Diffie-Hellman
- Implemented both frameworks in Haskell
- Efficient but probabilistic Monte Carlo method
- Future ideas: axiomatize full ECL, improve implementation, non-S5, other protocols, automated attack finding, . . .

References

Johan van Benthem, Jan van Eijck, and Barteld Kooi.

Logics of communication and change.

Information and computation, 204(11):1620-1662, 2006.

Alexandru Baltag, Lawrence S. Moss, and Slawomir Solecki.

The logic of public announcements, common knowledge, and private suspicions. In I. Bilboa, editor, *Proceedings of TARK'98*, pages 43–56, 1998.

Whitfield Diffie and Martin Hellman.

New directions in cryptography.

Information Theory, IEEE Transactions on, 22(6):644-654, 1976.

Guessing Games Cryptography Model Checking Conclusion

Thank you.

http://is.gd/eclonline