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What does it mean to know a number?

jan: “I have a number in mind, in the range from one to ten.
You may take turns guessing. Whoever guesses the
number first wins.”

gaia: “But how can we know you are not cheating?”
rosa: “Please write down the number before we start

guessing, so you can show it afterwards as a proof.”
jan: “Okay.”

[Jan writes 6 on a piece of paper, hidden from Gaia and Rosa.]
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What does it mean to know a number?

Agents: Jan, Gaia, Rosa

1
p

p = 6

0

1 ≤ p ≤ 10 and p 6∈ {6}

Gaia

Rosa
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Models

Definition (Guessing Game Models)
M = (W ,R,V ) where

(W ,R) is a multi-agent S5 frame,
V : w 7→ (Pw , fw ,C+

w ,C−w ) is a valuation:
Pw ⊆ P are the basic propositions true at w ,
fw is a function that assigns to some propositions q ∈ Q triples
(n,m,X ), meaning that the value of q is between n and m but
not in X . We also demand that

(i) whenever q ∈ Pw then n = m and X = ∅
(ii) whenever q ∈ Pv ∩ Pw for v , w ∈ W then fv (q) = fw (q)

C+
w ,C−

w ⊆ Q2 are in/equality constraints in the following sense:
(p, q) ∈ C+

w expresses that p and q have the same values and
(p, q) ∈ C−

w expresses that p and q have different values at w .
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Models

Example

Agents: Jan, Gaia, Rosa

7
p

1 ≤ p1 ≤ 10 and p1 6∈ {5}
p = 6
p 6= p1

4
p1, p

p1 = 5
p = 6

11
p1

p1 = 5
1 ≤ p ≤ 10 and p 6∈ {6, 10}

p 6= p1
8

1 ≤ p1 ≤ 10 and p1 6∈ {5}
1 ≤ p ≤ 10 and p 6∈ {6, 10}

p 6= p1

Rosa

Gaia

Rosa
Jan

Rosa

Jan

Rosa

Gaia

Rosa

Rosa
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Updates (two examples)

Register Creation p i← N: Create secret variable p for agent i
with value N.

p must be globally false before.
Copy all worlds, let p = N at the new worlds and let p have
any other value at the others.
Connect the worlds for everyone but i .

Announcement !p = q: Tell everyone that p = q.
p = q must be true at the current world.
Where p and q are false, add p = q to the constraints.

Exact definitions: Action structures as in [BMS98] and [BEK06].
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Syntax

Definition (Language)
The language LGG consists of formulas, commands and expressions:

φ ::= > | p | p = E | ¬φ | φ ∧ φ | Kiφ | Gφ | 〈C〉φ

C ::= !p = E | !p 6= E | p i← N | C ; C

E ::= p | N
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Assignments

Definition (Assignments and Agreement)
An assignment is a function h : Prop→ N.
It agrees with a world (h (w) iff

for all q ∈ Q: f 0w (q) ≤ h(q) ≤ f 1w (q) and h(q) 6∈ f 2w (q)
positive constraints C+

w : if (p, q) ∈ C+
w then h(p) = h(q)

negative constraints C−w : if (p, q) ∈ C−w then h(p) 6= h(q).

Example

Agents: Jan, Gaia, Rosa

3
p1

p1 = 5
1 ≤ p ≤ 10 and p 6∈ {6, 10}

0
p1, p

p1 = 5
p = 6

Gaia

Rosa
h = {p 7→ 6, p1 7→ 5}
agrees with 0, but not with 3.
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Semantics
Definition (Truth with regard to assignments)
M,w , h |= > always
M,w , h |= p iff p ∈ Pw
M,w , h |= p1 = p2 iff h(p1) = h(p2)
M,w , h |= p = N iff h(p) = N
M,w , h |= ¬φ iff notM,w , h |= φ
M,w , h |= φ1 ∧ φ2 iff M,w , h |= φ1 andM,w , h |= φ2
M,w , h |= Kiφ iff wRiw ′ ⇒ ∀h′ (w ′ :M,w ′, h′ |= φ
M,w , h |= Gφ iff ∀w ′ ∈W∀h′ (w ′ :M,w ′, h′ |= φ
M,w , h |= 〈! p = E 〉φ iff M,w , h |= p = E andM!p=E ,w , h |= φ
M,w , h |= 〈! p 6= E 〉φ iff M,w , h |= p 6= E andM!p 6=E ,w , h |= φ

M,w , h |= 〈p i← N〉φ iff M,w , h |= G¬p and
Mp i←N ,w , (h ∪ {(p,N)}) |= φ

M,w , h |= 〈A1; A2〉φ iff M,w , h |= 〈A1〉〈A2〉φ
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Semantics

Definition (World Level Truth)

M,w |= φ iff ∀h with w ( h :M,w , h |= φ.

A formula φ is valid iff for allM,w we haveM,w � φ.
We then write � φ.

This leaves some formulas undecided on the world level.
But we still have:
Theorem
For allM, w , i and φ we have eitherM,w |= Kiφ orM,w =|Kiφ.
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Reduction Axioms (some of them)

P5) 〈!p = E 〉K̂iφ↔ (p = E ∧ K̂i(〈!p = E 〉φ))
P6) 〈!p = E 〉Gφ↔ (p = E ∧ G(p = E → 〈!p = E 〉φ))

R3a1) 〈p i← N〉(p = N)↔ (G¬p)
R3a1’) 〈p i← N〉(p = M)↔ ⊥ where M 6= N
R3a2) 〈p i← N〉(q = M)↔ (G¬p ∧ (q = M)) where p 6= q
R3b1) 〈p i← N〉(p = p)↔ (G¬p)
R3b1’) 〈p i← N〉(p = q)↔ (G¬p ∧ (q = N)) where p 6= q
R3b2) 〈p i← N〉(q = p)↔ (G¬p ∧ (q = N)) where p 6= q
R3b2’) 〈p i← N〉(q = r)↔ (G¬p ∧ (q = r)) where p 6= q and p 6= r

R6) 〈p i← N〉(Kiφ)↔ (G¬p ∧ Ki(G¬p → 〈p i← N〉φ))
R7) 〈p i← N〉(Kjφ)↔ (G¬p ∧ Kjφ) where j 6= i
R8) 〈p i← N〉(Gφ)↔ G(〈p i← N〉φ)
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Axiomatization

Theorem (Soundness)
All reduction axioms are valid.

Definition (Proof System)
We write ` φ iff φ is provable using propositional tautologies,
standard rules for the S5 modalities Ki and the global modality G
and the reduction axioms.

Theorem (Completeness)
For all φ ∈ LGG, if � φ, then ` φ.
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Communication

“Let me tell you a secret ...”

Goal: Model the intended audience, but also eavesdropping.
New proposition: w � Li means Agent i is listening at w .
Two new commands: 〈Openi〉 and 〈Closei〉.
Announcements are only heard by the current listeners.
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Computation

“If I know that p = 5 then I also know that p + p = 10.”

Goal: Give agents some (realistic) computational power.
For now: Primality-Testing and modular arithmetic, which are both
assumed to be feasible in Cryptography.

New propositions: PrimeE , CoprimeEE
New expressions: E + E mod E , E × E mod E , EE mod E
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The full language

Definition (Language)
The language LECL consists of the following formulas, commands
and expressions.

φ ::= > | p | Li | p = E | ¬φ | φ ∧ φ | Kiφ | Gφ | 〈C〉φ
| Prime E | Coprime E E

C ::= p i← E | Openi | Closei | !p | !p = N | !p = p
| !p 6= N | !p 6= p | ?φ

E ::= p | N | E + E mod E | E × E mod E | EE mod E
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The Diffie-Hellman Key Exchange

(Whitfield Diffie and Martin Hellman [DH76])
1 Alice and Bob agree on a prime p and a base g < p such that

g and p − 1 are coprime.
2 Alice picks a secret N and sends gN mod p = A to Bob.
3 Bob picks a secret M and sends gM mod p = B to Alice.
4 Alice calculates k = BN mod p.
5 Bob calculates k = AM mod p.
6 They now have a shared key k = (gM)N = (gN)M mod p.

If the Diffie-Hellman problem is hard, Eve does not know k.
NB: The protocol is only secure against passive eavesdroppers.
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Diffie-Hellman in ECL

LetMDH be the blissful ignorance model for Alice, Bob and Eve.
Let DHg ,p,N,M be the command:

Coprime g (p − 1) ;
q1

a← N ; r1
a← (gq1 mod p) ; Openb ; !r1 ; Closeb ;

q2
b← M ; r2

b← (gq2 mod p) ; Opena ; !r2 ; Closea ;
s1

a← r2q1 mod p ; s2
b← r1q2 mod p

Let ψDH := (s1 = s2) ∧ (Kas1 ∧ Kbs2) ∧ (¬Kes1 ∧ ¬Kes2).
Then we have:

MDH,w � 〈DHg ,p,N,M〉ψDH
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Live Demo

Example 1
Creating a secret number for Alice and telling Bob about it.

Example 2
Order matters: “Hey Bob! Hey Alice!” 6= “Hey Alice! Hey Bob!”
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Monte Carlo Method

M,w |≈ φ iff for some randomly picked h (w :M,w , h |= φ

For many formulas we do not have to check all possible assignments.
Example: Is Ka(p = q) is true at 0?

0
q, p

q = 5
p = 5

1
p

0 ≤ q ≤ 256 and q 6∈ {5}
p = 5

Alice

1 256

No, and checking one assignment at 1 suffices.

NB: There are also cases where this almost always goes wrong.
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Normal VS. Monte-Carlo Methods

How long does it take to checkMDH,w � 〈DHg ,p,N,M〉ψDH?

registersize Normal Monte Carlo
28 1.07 2.74
29 1.36 2.82
210 2.13 3.41
211 3.59 3.24
212 5.17 2.8
213 11.56 3.28
214 22.66 3.57
215 44.44 4.1
216 81.26 3.52
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Conclusion

To know a number is to distinguish a true value from all others
Register models for DEL:
reduce “Knowledge of” to “Knowledge that”
Axiomatization for GG
Explicit communication and computation in ECL
Example: Diffie-Hellman
Implemented both frameworks in Haskell
Efficient but probabilistic Monte Carlo method

Future ideas: axiomatize full ECL, improve implementation,
non-S5, other protocols, automated attack finding, . . .
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Thank you.

http://is.gd/eclonline
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